In this paper, we study the problem of predicting the next position of a tourist given his history. In particular, we propose a model to identify the next point of interest that a tourist will visit in the future, by making use of similarity between trajectories on a graph and taking into account the spatial-temporal aspect of trajectories. We compare our method with a well-known machine learning-based technique, as well as with a popularity baseline, using three public real-world datasets. Our experimental results show that our technique outperforms state-of-the-art machine learning-based methods effectively, by providing at least twice more accurate results.
High-quality prediction of tourist movements using temporal trajectories in graphs
Muntean C.;Nardini F. M.;
2020
Abstract
In this paper, we study the problem of predicting the next position of a tourist given his history. In particular, we propose a model to identify the next point of interest that a tourist will visit in the future, by making use of similarity between trajectories on a graph and taking into account the spatial-temporal aspect of trajectories. We compare our method with a well-known machine learning-based technique, as well as with a popularity baseline, using three public real-world datasets. Our experimental results show that our technique outperforms state-of-the-art machine learning-based methods effectively, by providing at least twice more accurate results.| File | Dimensione | Formato | |
|---|---|---|---|
|
prod_445283-doc_160082.pdf
Open Access dal 24/03/2023
Descrizione: High-quality prediction of tourist movements using temporal trajectories in graphs
Tipologia:
Versione Editoriale (PDF)
Dimensione
1.28 MB
Formato
Adobe PDF
|
1.28 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.


