We studied the charge carrier dynamics in 2D perovskite NBT2PbI4 by ultrafast optical pump-THz probe spectroscopy. We observed a few ps long relaxation dynamics that can be ascribed to the band to band carrier recombination, in the absence of any contribution from many-body and trap assisted processes. The transient conductivity spectra show that the polaron dynamics is strongly modulated by the presence of a rich exciton population. The polarization field resulting from the exciton formation acts as the source of a restoring force that localizes polarons. This is revealed by the presence of a negative imaginary conductivity. Our results show that the dynamics of excitons in 2D perovskites at room temperature can be detected by monitoring their effect on the conductivity of the photoinduced polaronic carrier.

Ultrafast charge carrier dynamics in quantum confined 2D perovskite

Folpini G;Devetta M;Vozzi C;Stagira S
;
Cinquanta E
Ultimo
2020

Abstract

We studied the charge carrier dynamics in 2D perovskite NBT2PbI4 by ultrafast optical pump-THz probe spectroscopy. We observed a few ps long relaxation dynamics that can be ascribed to the band to band carrier recombination, in the absence of any contribution from many-body and trap assisted processes. The transient conductivity spectra show that the polaron dynamics is strongly modulated by the presence of a rich exciton population. The polarization field resulting from the exciton formation acts as the source of a restoring force that localizes polarons. This is revealed by the presence of a negative imaginary conductivity. Our results show that the dynamics of excitons in 2D perovskites at room temperature can be detected by monitoring their effect on the conductivity of the photoinduced polaronic carrier.
2020
Istituto di fotonica e nanotecnologie - IFN
Yltrafast Thz spectroscopy
Polaron
Perovskites
excitons
File in questo prodotto:
File Dimensione Formato  
214705_1_online.pdf

accesso aperto

Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 1.99 MB
Formato Adobe PDF
1.99 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/428128
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 13
  • ???jsp.display-item.citation.isi??? ND
social impact