In this paper, we propose a survival factorization framework that models information cascades by tying together social influence patterns, topical structure, and temporal dynamics. This is achieved through the introduction of a latent space which encodes: (a) the relevance of an information cascade on a topic; (b) the topical authoritativeness and the susceptibility of each individual involved in the information cascade, and (c) temporal topical patterns. By exploiting the cumulative properties of the survival function and of the likelihood of the model on a given adoption log, which records the observed activation times of users and side-information for each cascade, we show that the inference phase is linear in the number of users and in the number of adoptions. The evaluation on both synthetic and real-world data shows the effectiveness of the model in detecting the interplay between topics and social influence patterns, which ultimately provides high accuracy in predicting users activation times.

A Factorization Approach for Survival Analysis on Diffusion Networks

Giuseppe Manco;Ettore Ritacco;
2021

Abstract

In this paper, we propose a survival factorization framework that models information cascades by tying together social influence patterns, topical structure, and temporal dynamics. This is achieved through the introduction of a latent space which encodes: (a) the relevance of an information cascade on a topic; (b) the topical authoritativeness and the susceptibility of each individual involved in the information cascade, and (c) temporal topical patterns. By exploiting the cumulative properties of the survival function and of the likelihood of the model on a given adoption log, which records the observed activation times of users and side-information for each cascade, we show that the inference phase is linear in the number of users and in the number of adoptions. The evaluation on both synthetic and real-world data shows the effectiveness of the model in detecting the interplay between topics and social influence patterns, which ultimately provides high accuracy in predicting users activation times.
2021
Istituto di Calcolo e Reti ad Alte Prestazioni - ICAR
community detection
information diffusion
Social influence
social network analysis
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/429213
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 3
social impact