McCART is a numerical procedure to solve the radiative transfer equation for light propagation through the atmosphere from visible to near-infrared wavelengths. The procedure has been developed to study the effect of the atmosphere in the remote sensing of the Earth, using aerospace imaging spectrometers. The simulation is run for a reference layered plane nonabsorbing atmosphere and a plane ground with uniform reflectance. For a given distribution of ground reflectance and for a specific profile of scattering and absorption properties of the atmosphere, the spectral response of the sensor is obtained in a short time from the results of the Monte Carlo simulation by using scaling relationships and symmetry properties. The procedure also includes an accurate analysis of the adjacency and trapping effects due to multiple scattering of photons coming from neighboring pixels. McCART can generate synthetic images of the Earth’s surface for arbitrary viewing conditions. The results can be used to establish the limits of applicability of approximate algorithms for the processing and analysis of hyperspectral images acquired by imaging spectrometers. In addition, the algorithm can be used to develop procedures for atmospheric correction for the accurate retrieval of the spectral ground reflectance.

McCART: Monte Carlo Code for Atmospheric Radiative Transfer

Vanni Nardino;Samuele Del Bianco;Donatella Guzzi;Ivan Pippi
2008

Abstract

McCART is a numerical procedure to solve the radiative transfer equation for light propagation through the atmosphere from visible to near-infrared wavelengths. The procedure has been developed to study the effect of the atmosphere in the remote sensing of the Earth, using aerospace imaging spectrometers. The simulation is run for a reference layered plane nonabsorbing atmosphere and a plane ground with uniform reflectance. For a given distribution of ground reflectance and for a specific profile of scattering and absorption properties of the atmosphere, the spectral response of the sensor is obtained in a short time from the results of the Monte Carlo simulation by using scaling relationships and symmetry properties. The procedure also includes an accurate analysis of the adjacency and trapping effects due to multiple scattering of photons coming from neighboring pixels. McCART can generate synthetic images of the Earth’s surface for arbitrary viewing conditions. The results can be used to establish the limits of applicability of approximate algorithms for the processing and analysis of hyperspectral images acquired by imaging spectrometers. In addition, the algorithm can be used to develop procedures for atmospheric correction for the accurate retrieval of the spectral ground reflectance.
2008
Istituto di Fisica Applicata - IFAC
Aerosol
Atmospheric propagation
multilayered media
remote sensing
scattering
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/430562
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact