The precursor protein of the nuclear lamina constituent lamin A is a 74-kDa protein called prelamin A which undergoes subsequent steps of posttranslational modification at its C-terminal CaaX residue. The unexpected finding that accumulation of unprocessable prelamin A is the molecular basis of the most severe laminopathies so far identified, including Hutchinson–Gilford progeria and restrictive dermopathy, has opened new perspectives in the study of the pathogenic mechanisms causing all lamin A/C–linked disorders, as well as new interest in the analysis of molecular mechanisms regulating prelamin A processing. However, complete knowledge of the cellular pathways affected downstream of prelamin A accumulation is still lacking, but it could give new insights both in normal and pathogenic mechanisms regulated by lamins. In this article, we review the involvement of defects of prelamin A processing in the pathogenesis of a group of laminopathies. In particular, we discuss the possibility that mutations leading to accumulation of particular forms of prelamin A result in specific nuclear abnormalities and impairment of nuclear functions leading to cell senescence or altered metabolism.

Involvement of prelamin A in laminopathies.

Lattanzi G
2007

Abstract

The precursor protein of the nuclear lamina constituent lamin A is a 74-kDa protein called prelamin A which undergoes subsequent steps of posttranslational modification at its C-terminal CaaX residue. The unexpected finding that accumulation of unprocessable prelamin A is the molecular basis of the most severe laminopathies so far identified, including Hutchinson–Gilford progeria and restrictive dermopathy, has opened new perspectives in the study of the pathogenic mechanisms causing all lamin A/C–linked disorders, as well as new interest in the analysis of molecular mechanisms regulating prelamin A processing. However, complete knowledge of the cellular pathways affected downstream of prelamin A accumulation is still lacking, but it could give new insights both in normal and pathogenic mechanisms regulated by lamins. In this article, we review the involvement of defects of prelamin A processing in the pathogenesis of a group of laminopathies. In particular, we discuss the possibility that mutations leading to accumulation of particular forms of prelamin A result in specific nuclear abnormalities and impairment of nuclear functions leading to cell senescence or altered metabolism.
2007
Istituto di Genetica Molecolare "Luigi Luca Cavalli Sforza"
lamin A/C
, chromatin organization
transcriptional regulators
farnesyltransferase inhibitors
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/43252
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact