MINECORE is a recently proposed decision-theoretic algorithm for technology-assisted review that attempts to minimise the expected costs of review for responsiveness and privilege in e-discovery. In MINECORE, two probabilistic classifiers that classify documents by responsiveness and by privilege, respectively, generate posterior probabilities. These latter are fed to an algorithm that returns as output, after applying risk minimization, two ranked lists, which indicate exactly which documents the annotators should review for responsiveness and which documents they should review for privilege. In this paper we attempt to find out if the performance of MINECORE can be improved (a) by using, for the purpose of training the two classifiers, active learning (implemented either via relevance sampling, or via uncertainty sampling, or via a combination of them) instead of passive learning, and (b) by using the Saerens-Latinne-Decaestecker algorithm to improve the quality of the posterior probabilities that MINECORE receives as input. We address these two research questions by carrying out extensive experiments on the RCV1-v2 benchmark. We make publicly available the code and data for reproducing all our experiments.

Improved risk minimization algorithms for technology-assisted review

Molinari A;Esuli A;Sebastiani F
2023

Abstract

MINECORE is a recently proposed decision-theoretic algorithm for technology-assisted review that attempts to minimise the expected costs of review for responsiveness and privilege in e-discovery. In MINECORE, two probabilistic classifiers that classify documents by responsiveness and by privilege, respectively, generate posterior probabilities. These latter are fed to an algorithm that returns as output, after applying risk minimization, two ranked lists, which indicate exactly which documents the annotators should review for responsiveness and which documents they should review for privilege. In this paper we attempt to find out if the performance of MINECORE can be improved (a) by using, for the purpose of training the two classifiers, active learning (implemented either via relevance sampling, or via uncertainty sampling, or via a combination of them) instead of passive learning, and (b) by using the Saerens-Latinne-Decaestecker algorithm to improve the quality of the posterior probabilities that MINECORE receives as input. We address these two research questions by carrying out extensive experiments on the RCV1-v2 benchmark. We make publicly available the code and data for reproducing all our experiments.
2023
Istituto di Scienza e Tecnologie dell'Informazione "Alessandro Faedo" - ISTI
Machine learning
Technology assisted review
Prior probability shift
File in questo prodotto:
File Dimensione Formato  
prod_481846-doc_198199.pdf

accesso aperto

Descrizione: Improved risk minimization algorithms for technology-assisted review
Tipologia: Versione Editoriale (PDF)
Dimensione 3.55 MB
Formato Adobe PDF
3.55 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/433939
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact