Microalgae are excellent sources of biomass containing several important compounds for human and animal nutrition-proteins, lipids, polysaccharides, pigments and antioxidants as well as bioactive secondary metabolites. In addition, they have a great biotechnological potential for nutraceuticals, and pharmaceuticals as well as for CO2 sequestration, wastewater treatment, and potentially also biofuel and biopolymer production. In this review, the industrial production of the most frequently used microalgae genera-Arthrospira, Chlorella, Dunaliella, Haematococcus, Nannochloropsis, Phaeodactylum, Porphyridium and several other species is discussed as concerns the applicability of the most widely used large-scale systems, solar bioreactors (SBRs)-open ponds, raceways, cascades, sleeves, columns, flat panels, tubular systems and others. Microalgae culturing is a complex process in which bioreactor operating parameters and physiological variables closely interact. The requirements of the biological system-microalgae culture are crucial to select the suitable type of SBR. When designing a cultivation process, the phototrophic production of microalgae biomass, it is necessary to employ SBRs that are adequately designed, built and operated to satisfy the physiological requirements of the selected microalgae species, considering also local climate. Moreover, scaling up microalgae cultures for commercial production requires qualified staff working out a suitable cultivation regime.

Solar bioreactors used for the industrial production of microalgae

Chini Zittelli G;Torzillo G
2023

Abstract

Microalgae are excellent sources of biomass containing several important compounds for human and animal nutrition-proteins, lipids, polysaccharides, pigments and antioxidants as well as bioactive secondary metabolites. In addition, they have a great biotechnological potential for nutraceuticals, and pharmaceuticals as well as for CO2 sequestration, wastewater treatment, and potentially also biofuel and biopolymer production. In this review, the industrial production of the most frequently used microalgae genera-Arthrospira, Chlorella, Dunaliella, Haematococcus, Nannochloropsis, Phaeodactylum, Porphyridium and several other species is discussed as concerns the applicability of the most widely used large-scale systems, solar bioreactors (SBRs)-open ponds, raceways, cascades, sleeves, columns, flat panels, tubular systems and others. Microalgae culturing is a complex process in which bioreactor operating parameters and physiological variables closely interact. The requirements of the biological system-microalgae culture are crucial to select the suitable type of SBR. When designing a cultivation process, the phototrophic production of microalgae biomass, it is necessary to employ SBRs that are adequately designed, built and operated to satisfy the physiological requirements of the selected microalgae species, considering also local climate. Moreover, scaling up microalgae cultures for commercial production requires qualified staff working out a suitable cultivation regime.
2023
Istituto per la BioEconomia - IBE
Biomass
Biotechnology
Microalgae
Large-scale production
Solar bioreactor
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/434009
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 12
  • ???jsp.display-item.citation.isi??? 10
social impact