Thermal modification of wood is a well-known industrial process performed to increase the durability and dimensional stability or to change the colour of natural wood. The treatment influences many other properties of wood including the emission of volatile organic compounds (VOCs). VOC release ultimately affects the quality of indoor air and the capability of having low VOC emission is often included as a key parameter for the attribution of quality labels. In the present work, wood from six tree species was subjected to different types of treatment and VOC profiling was carried out on both treated and untreated samples by means of PTR-ToF-MS. Different types of thermal treatment were tested, involving either overpressure or vacuum and the effect of different temperature profiles was evaluated. Hardwood and softwood showed different release profiles under all tested conditions: the headspace of softwood was richer in several VOCs, such as terpenes, phenols and C6-C9 aldehydes and carboxylic acids. Upon thermal treatment, terpene emissions decreased, whereas several other VOCs, such as formic acid, formaldehyde, furfural and acetic acid, were released in higher amounts. With its high sensitivity and throughput, PTR-ToF-MS appears to be a very powerful analytical tool, useful in supporting the selection of wood materials for different end uses.

Exploring volatile organic compound emission from thermally modified wood by PTR-ToF-MS

Cuccui I;Tonezzer M;Allegretti O
2022

Abstract

Thermal modification of wood is a well-known industrial process performed to increase the durability and dimensional stability or to change the colour of natural wood. The treatment influences many other properties of wood including the emission of volatile organic compounds (VOCs). VOC release ultimately affects the quality of indoor air and the capability of having low VOC emission is often included as a key parameter for the attribution of quality labels. In the present work, wood from six tree species was subjected to different types of treatment and VOC profiling was carried out on both treated and untreated samples by means of PTR-ToF-MS. Different types of thermal treatment were tested, involving either overpressure or vacuum and the effect of different temperature profiles was evaluated. Hardwood and softwood showed different release profiles under all tested conditions: the headspace of softwood was richer in several VOCs, such as terpenes, phenols and C6-C9 aldehydes and carboxylic acids. Upon thermal treatment, terpene emissions decreased, whereas several other VOCs, such as formic acid, formaldehyde, furfural and acetic acid, were released in higher amounts. With its high sensitivity and throughput, PTR-ToF-MS appears to be a very powerful analytical tool, useful in supporting the selection of wood materials for different end uses.
2022
Istituto dei Materiali per l'Elettronica ed il Magnetismo - IMEM
Istituto per la BioEconomia - IBE
Aldehydes; Formaldehyde; Volatile Organic Compounds; Wood
File in questo prodotto:
File Dimensione Formato  
prod_480359-doc_197289.pdf

accesso aperto

Descrizione: Exploring volatile organic compound emission from thermally modified wood by PTR-ToF-MS
Tipologia: Versione Editoriale (PDF)
Licenza: Altro tipo di licenza
Dimensione 2.07 MB
Formato Adobe PDF
2.07 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/434675
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact