Like all retroviruses, human immunodeficiency virus type 1 (HIV-1) undergoes reverse transcription during its replication cycle. The cellular cofactors potentially involved in this process still remain to be identified. We show here that A-kinase anchoring protein 149 (AKAP149) interacts with HIV-1 reverse transcriptase (RT) in both the yeast two-hybrid system and human cells. The AKAP149 binding site has been mapped to the RNase H domain of HIV-1 RT. AKAP149 silencing by RNA interference in HIV-1-infected cells inhibited viral replication at the reverse transcription step. We selected single-point mutants of RT defective for AKAP149 binding and demonstrated that mutant G462R, despite retaining significant intrinsic RT activity in vitro, failed to carry out HIV-1 reverse transcription correctly in infected cells. This suggests that the interaction between RT and AKAP149 in infected cells may play an important role in HIV-1 reverse transcription.

AKAP149 binds to HIV-1 reverse transcriptase and is involved in the reverse transcription.

Maga G;
2008

Abstract

Like all retroviruses, human immunodeficiency virus type 1 (HIV-1) undergoes reverse transcription during its replication cycle. The cellular cofactors potentially involved in this process still remain to be identified. We show here that A-kinase anchoring protein 149 (AKAP149) interacts with HIV-1 reverse transcriptase (RT) in both the yeast two-hybrid system and human cells. The AKAP149 binding site has been mapped to the RNase H domain of HIV-1 RT. AKAP149 silencing by RNA interference in HIV-1-infected cells inhibited viral replication at the reverse transcription step. We selected single-point mutants of RT defective for AKAP149 binding and demonstrated that mutant G462R, despite retaining significant intrinsic RT activity in vitro, failed to carry out HIV-1 reverse transcription correctly in infected cells. This suggests that the interaction between RT and AKAP149 in infected cells may play an important role in HIV-1 reverse transcription.
2008
Istituto di Genetica Molecolare "Luigi Luca Cavalli Sforza"
HIV-1
AKAP
AIDS
cellualr cofactor
viral pathogenesis
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/435190
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact