In this paper we present ConQueSt, a constraint based querying system devised with the aim of supporting the intrinsically exploratory (i.e., human-guided, interactive, iterative) nature of pattern discovery. Following the inductive database vision, our framework provides users with an expressive constraint based query language which allows the discovery process to be effectively driven toward potentially interesting patterns. Such constraints are also exploited to reduce the cost of pattern mining computation. We implemented a comprehensive mining system that can access real world relational databases from which extract data. After a preprocessing step, mining queries are answered by an efficient pattern mining engine which entails several data and search space reduction techniques. Resulting patterns are then presented to the user, and possibly stored in the database. New user-defined constraints can be easily added to the system in order to target the particular application considered.
On interactive pattern mining from relational databases
Lucchese C;Bonchi F;Giannotti F;Orlando S;Perego R;Trasarti R
2007
Abstract
In this paper we present ConQueSt, a constraint based querying system devised with the aim of supporting the intrinsically exploratory (i.e., human-guided, interactive, iterative) nature of pattern discovery. Following the inductive database vision, our framework provides users with an expressive constraint based query language which allows the discovery process to be effectively driven toward potentially interesting patterns. Such constraints are also exploited to reduce the cost of pattern mining computation. We implemented a comprehensive mining system that can access real world relational databases from which extract data. After a preprocessing step, mining queries are answered by an efficient pattern mining engine which entails several data and search space reduction techniques. Resulting patterns are then presented to the user, and possibly stored in the database. New user-defined constraints can be easily added to the system in order to target the particular application considered.File | Dimensione | Formato | |
---|---|---|---|
prod_44002-doc_131522.pdf
solo utenti autorizzati
Descrizione: On interactive pattern mining from relational databases
Tipologia:
Versione Editoriale (PDF)
Dimensione
929.05 kB
Formato
Adobe PDF
|
929.05 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.