In this paper we propose an approach to semantic matchmaking that exploits various knowledge representation technologies to find most promising partners in peer-to-peer e-marketplaces. In particular we mix in a formal and principled way the semantic expressiveness of DLR-lite Logic Programs, fuzzy logic and utility theory. We adopt DLR-Lite Logic Programs to obtain a reasonable compromise between expressiveness and complexity to ensure the scalability of our approach to large e-marketplaces, and Fuzzy Logic to model logical specifications as soft constraints. Furthermore, fully exploiting the peer-to-peer paradigm, we consider in the matchmaking process preferences and corresponding utilities of both parties.
Vague knowledge bases for matchmaking in P2P E-Marketplaces
Straccia U;
2007
Abstract
In this paper we propose an approach to semantic matchmaking that exploits various knowledge representation technologies to find most promising partners in peer-to-peer e-marketplaces. In particular we mix in a formal and principled way the semantic expressiveness of DLR-lite Logic Programs, fuzzy logic and utility theory. We adopt DLR-Lite Logic Programs to obtain a reasonable compromise between expressiveness and complexity to ensure the scalability of our approach to large e-marketplaces, and Fuzzy Logic to model logical specifications as soft constraints. Furthermore, fully exploiting the peer-to-peer paradigm, we consider in the matchmaking process preferences and corresponding utilities of both parties.| File | Dimensione | Formato | |
|---|---|---|---|
|
prod_44028-doc_131665.pdf
solo utenti autorizzati
Descrizione: Vague knowledge bases for matchmaking in P2P E-Marketplaces
Tipologia:
Versione Editoriale (PDF)
Dimensione
634.12 kB
Formato
Adobe PDF
|
634.12 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.


