Nanostructured TiO2 is one of the best materials for photocatalysis, thanks to its high surface area and surface reactivity, but its large energy bandgap (3.2 eV) hinders the use of the entire solar spectrum. Here, it is proposed that defect-engineered nanostructured TiO2 photocatalysts are obtained by hydrogenation strategy to extend its light absorption up to the near-infrared region. It is demonstrated that hydrogenated or colored TiO2 hollow spheres (THS) composed of hierarchically assembled nanoparticles result in much broader exploitation of the solar spectrum (up to 1200 nm) and the engineered surface enhances the photogeneration of charges for photocatalytic processes. In turn, when applied for photodegradation of a targeted drug (Ciprofloxacin) this results in 82% degradation after 6 h under simulated sunlight. Valence band analysis by photoelectron spectroscopy revealed the presence of oxygen vacancies, whose surface density increases with the hydrogenation rate. Thus, a tight correlation between degree of hydrogenation and photocatalytic activity is directly established. Further insight comes from electron paramagnetic resonance, which evidences bulk Ti3+ centers only in hydrogenated THS. The results are anticipated to disclose a new path toward highly efficientphotocatalytic titania in a series of applications targeting water remediation and solar fuel production.

Surface Defect Engineering in Colored TiO2 Hollow Spheres Toward Efficient Photocatalysis

Polina Sheverdyaeva;Matteo Belli;Paolo Moras;Alberto Vomiero;
2023

Abstract

Nanostructured TiO2 is one of the best materials for photocatalysis, thanks to its high surface area and surface reactivity, but its large energy bandgap (3.2 eV) hinders the use of the entire solar spectrum. Here, it is proposed that defect-engineered nanostructured TiO2 photocatalysts are obtained by hydrogenation strategy to extend its light absorption up to the near-infrared region. It is demonstrated that hydrogenated or colored TiO2 hollow spheres (THS) composed of hierarchically assembled nanoparticles result in much broader exploitation of the solar spectrum (up to 1200 nm) and the engineered surface enhances the photogeneration of charges for photocatalytic processes. In turn, when applied for photodegradation of a targeted drug (Ciprofloxacin) this results in 82% degradation after 6 h under simulated sunlight. Valence band analysis by photoelectron spectroscopy revealed the presence of oxygen vacancies, whose surface density increases with the hydrogenation rate. Thus, a tight correlation between degree of hydrogenation and photocatalytic activity is directly established. Further insight comes from electron paramagnetic resonance, which evidences bulk Ti3+ centers only in hydrogenated THS. The results are anticipated to disclose a new path toward highly efficientphotocatalytic titania in a series of applications targeting water remediation and solar fuel production.
2023
Istituto per la Microelettronica e Microsistemi - IMM
Istituto di Struttura della Materia - ISM - Sede Roma Tor Vergata
colored-TiO2
hierarchical nanostructures
hollow spheres
multiple reflections
photocatalysts
solar light
surface defects
File in questo prodotto:
File Dimensione Formato  
prod_479202-doc_196510.pdf

accesso aperto

Descrizione: Liccardo et al., Adv. Funct. Mater. 2023 Surface Defect Engineering in Colored TiO2 Hollow Spheres Toward Efficient Photocatalysis
Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 4.18 MB
Formato Adobe PDF
4.18 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/436345
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact