In this paper we address the problem of automatically enriching legal texts with semantic annotation, an essential pre–requisite to effective indexing and retrieval of legal documents. This is done through illustration of SALEM (Semantic Annotation for LEgal Management), a computational system developed for automated semantic annotation of (Italian) law texts. SALEM is an incremental system using Natural Language Processing techniques to perform two tasks: i) classify law paragraphs according to their regulatory content, and ii) extract relevant text fragments corresponding to specific semantic roles that are relevant for the different types of regulatory content. The paper sketches the overall architecture of SALEM and reports results of a preliminary case study on a sample of Italian law texts.

Automatic Classification and Analysis of Provisions in Italian Legal Texts: A Case Study

Bartolini R;Montemagni S;Pirrelli V;Soria C
2004

Abstract

In this paper we address the problem of automatically enriching legal texts with semantic annotation, an essential pre–requisite to effective indexing and retrieval of legal documents. This is done through illustration of SALEM (Semantic Annotation for LEgal Management), a computational system developed for automated semantic annotation of (Italian) law texts. SALEM is an incremental system using Natural Language Processing techniques to perform two tasks: i) classify law paragraphs according to their regulatory content, and ii) extract relevant text fragments corresponding to specific semantic roles that are relevant for the different types of regulatory content. The paper sketches the overall architecture of SALEM and reports results of a preliminary case study on a sample of Italian law texts.
Campo DC Valore Lingua
dc.authority.orgunit Istituto di linguistica computazionale "Antonio Zampolli" - ILC -
dc.authority.people Bartolini R it
dc.authority.people Lenci A it
dc.authority.people Montemagni S it
dc.authority.people Pirrelli V it
dc.authority.people Soria C it
dc.collection.id.s 8c50ea44-be95-498f-946e-7bb5bd666b7c *
dc.collection.name 02.01 Contributo in volume (Capitolo o Saggio) *
dc.contributor.appartenenza Istituto di linguistica computazionale "Antonio Zampolli" - ILC *
dc.contributor.appartenenza.mi 918 *
dc.date.accessioned 2024/02/21 07:31:22 -
dc.date.available 2024/02/21 07:31:22 -
dc.date.issued 2004 -
dc.description.abstracteng In this paper we address the problem of automatically enriching legal texts with semantic annotation, an essential pre–requisite to effective indexing and retrieval of legal documents. This is done through illustration of SALEM (Semantic Annotation for LEgal Management), a computational system developed for automated semantic annotation of (Italian) law texts. SALEM is an incremental system using Natural Language Processing techniques to perform two tasks: i) classify law paragraphs according to their regulatory content, and ii) extract relevant text fragments corresponding to specific semantic roles that are relevant for the different types of regulatory content. The paper sketches the overall architecture of SALEM and reports results of a preliminary case study on a sample of Italian law texts. -
dc.description.affiliations Lenci Alessandro: Università di Pisa, Dipartimento di Linguistica, Via S. Maria 36, 56100 Pisa, Italy -
dc.description.allpeople Bartolini, R; Lenci, A; Montemagni, S; Pirrelli, V; Soria, C -
dc.description.allpeopleoriginal Bartolini R.; Lenci A.; Montemagni S.; Pirrelli V.; Soria C. -
dc.description.fulltext none en
dc.description.numberofauthors 5 -
dc.identifier.doi 10.1007/978-3-540-30470-8_72 -
dc.identifier.isbn 978-3-540-23664-1 -
dc.identifier.isi WOS:000225021000072 -
dc.identifier.scopus 2-s2.0-35048890166 -
dc.identifier.uri https://hdl.handle.net/20.500.14243/436876 -
dc.identifier.url https://rdcu.be/dftjm -
dc.language.iso eng -
dc.publisher.country DEU -
dc.publisher.name Springer -
dc.publisher.place Berlin -
dc.relation.alleditors Meersman, R., Tari, Z., Corsaro, A. -
dc.relation.firstpage 593 -
dc.relation.ispartofbook On the Move to Meaningful Internet Systems 2004: OTM 2004 Workshops. OTM 2004 -
dc.relation.lastpage 604 -
dc.relation.numberofpages 11 -
dc.subject.keywords Annotazione semantica -
dc.subject.keywords Classificazione automatica -
dc.subject.singlekeyword Annotazione semantica *
dc.subject.singlekeyword Classificazione automatica *
dc.title Automatic Classification and Analysis of Provisions in Italian Legal Texts: A Case Study en
dc.type.driver info:eu-repo/semantics/bookPart -
dc.type.full 02 Contributo in Volume::02.01 Contributo in volume (Capitolo o Saggio) it
dc.type.miur 268 -
dc.type.referee Sì, ma tipo non specificato -
dc.ugov.descaux1 30867 -
iris.isi.extIssued 2004 -
iris.isi.extTitle Automatic classification and analysis of provisions in Italian legal texts: A case study -
iris.isi.metadataErrorDescription 0 -
iris.isi.metadataErrorType ERROR_NO_MATCH -
iris.isi.metadataStatus ERROR -
iris.orcid.lastModifiedDate 2024/04/04 18:02:04 *
iris.orcid.lastModifiedMillisecond 1712246524350 *
iris.scopus.extIssued 2004 -
iris.scopus.extTitle Automatic classification and analysis of provisions in italian legal texts: A case study -
iris.sitodocente.maxattempts 3 -
iris.unpaywall.doi 10.1007/978-3-540-30470-8_72 *
iris.unpaywall.isoa false *
iris.unpaywall.journalisindoaj false *
iris.unpaywall.metadataCallLastModified 30/03/2025 07:23:58 -
iris.unpaywall.metadataCallLastModifiedMillisecond 1743312238170 -
iris.unpaywall.oastatus closed *
scopus.authority.anceserie LECTURE NOTES IN COMPUTER SCIENCE###0302-9743 *
scopus.category 2614 *
scopus.category 1700 *
scopus.contributor.affiliation CNR -
scopus.contributor.affiliation Dipartimento di Linguistica -
scopus.contributor.affiliation CNR -
scopus.contributor.affiliation CNR -
scopus.contributor.affiliation CNR -
scopus.contributor.afid 60008941 -
scopus.contributor.afid 60028868 -
scopus.contributor.afid 60008941 -
scopus.contributor.afid 60008941 -
scopus.contributor.afid 60008941 -
scopus.contributor.auid 22333654100 -
scopus.contributor.auid 8286541500 -
scopus.contributor.auid 15056781100 -
scopus.contributor.auid 14833305800 -
scopus.contributor.auid 23398567300 -
scopus.contributor.country Italy -
scopus.contributor.country Italy -
scopus.contributor.country Italy -
scopus.contributor.country Italy -
scopus.contributor.country Italy -
scopus.contributor.dptid -
scopus.contributor.dptid 104459999 -
scopus.contributor.dptid -
scopus.contributor.dptid -
scopus.contributor.dptid -
scopus.contributor.name Roberto -
scopus.contributor.name Alessandro -
scopus.contributor.name Simonetta -
scopus.contributor.name Vito -
scopus.contributor.name Claudia -
scopus.contributor.subaffiliation Istituto di Linguistica Computazionale; -
scopus.contributor.subaffiliation Università di Pisa; -
scopus.contributor.subaffiliation Istituto di Linguistica Computazionale; -
scopus.contributor.subaffiliation Istituto di Linguistica Computazionale; -
scopus.contributor.subaffiliation Istituto di Linguistica Computazionale; -
scopus.contributor.surname Bartolini -
scopus.contributor.surname Lenci -
scopus.contributor.surname Montemagni -
scopus.contributor.surname Pirrelli -
scopus.contributor.surname Soria -
scopus.date.issued 2004 *
scopus.description.abstracteng In this paper we address the problem of automatically enriching legal texts with semantic annotation, an essential pre-requisite to effective indexing and retrieval of legal documents. This is done through illustration of SALEM (Semantic Annotation for LEgal Management), a computational system developed for automated semantic annotation of (Italian) law texts. SALEM is an incremental system using Natural Language Processing techniques to perform two tasks: i) classify law paragraphs according to their regulatory content, and ii) extract relevant text fragments corresponding to specific semantic roles that are relevant for the different types of regulatory content. The paper sketches the overall architecture of SALEM and reports results of a preliminary case study on a sample of Italian law texts. © Springer-Verlag 2004. *
scopus.description.allpeopleoriginal Bartolini R.; Lenci A.; Montemagni S.; Pirrelli V.; Soria C. *
scopus.differences scopus.authority.anceserie *
scopus.differences scopus.publisher.name *
scopus.differences scopus.description.abstracteng *
scopus.differences scopus.relation.volume *
scopus.document.type ar *
scopus.document.types ar *
scopus.identifier.doi 10.1007/978-3-540-30470-8_72 *
scopus.identifier.eissn 1611-3349 *
scopus.identifier.pui 39736365 *
scopus.identifier.scopus 2-s2.0-35048890166 *
scopus.journal.sourceid 25674 *
scopus.language.iso eng *
scopus.publisher.name Springer Verlag *
scopus.relation.firstpage 593 *
scopus.relation.lastpage 604 *
scopus.relation.volume 3292 *
scopus.title Automatic classification and analysis of provisions in italian legal texts: A case study *
scopus.titleeng Automatic classification and analysis of provisions in italian legal texts: A case study *
Appare nelle tipologie: 02.01 Contributo in volume (Capitolo o Saggio)
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/436876
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 23
  • ???jsp.display-item.citation.isi??? 12
social impact