We investigate experimentally and theoretically plasmon-enhanced optical trapping of metal nanoparticles. We calculate the optical forces on gold and silver nanospheres through a procedure based on the Maxwell stress tensor in the transition T-matrix formalism. We compare our calculations with experimental results finding excellent agreement. We also demonstrate how light-driven rotations can be generated and detected in non-symmetric nanorods aggregates. Analyzing the motion correlations of the trapped nanostructures, we measure with high accuracy both the optical trapping parameters, and the rotation frequency induced by the radiation pressure.
Plasmon-enhanced optical trapping of metal nanoparticles: Force calculations and light-driven rotations of nanoaggregates
Iatì MA;Gucciardi PG
2010
Abstract
We investigate experimentally and theoretically plasmon-enhanced optical trapping of metal nanoparticles. We calculate the optical forces on gold and silver nanospheres through a procedure based on the Maxwell stress tensor in the transition T-matrix formalism. We compare our calculations with experimental results finding excellent agreement. We also demonstrate how light-driven rotations can be generated and detected in non-symmetric nanorods aggregates. Analyzing the motion correlations of the trapped nanostructures, we measure with high accuracy both the optical trapping parameters, and the rotation frequency induced by the radiation pressure.| File | Dimensione | Formato | |
|---|---|---|---|
|
prod_66442-doc_17995.pdf
non disponibili
Descrizione: Spie Proceedings 2010
Dimensione
2.58 MB
Formato
Adobe PDF
|
2.58 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.


