The last decade showed a clear technological trend toward the adoption of heterogeneous source of information, combined with data-fusion strategies to increase the performance of indoor localization systems. In this respect, the adoption of short-range network protocols such as WiFi and Bluetooth represent a common approach. We investigate, in this work, the use of Bluetooth 5.1 Direction Finding specification to test an indoor localization system solely based on the estimated Angle of Arrival (AoA) between an anchor and a receiver. We first detail our experimental data collection campaign and the adopted hardware. Then, we study not only the accuracy of the estimated angles on two reference planes but also the localization error introduced with the proposed algorithm by varying the body orientation of the target user, namely North, South, West, Est. Experimental results in a real-world indoor environment show an average localization error of 2.08m with only 1 anchor node and 5° of AoA' error for all 28 monitored locations. We also identify regions in which the AoA estimation rapidly decreases, giving rise to the possibility of identifying the boundaries of the adopted technology.

On the analysis of body orientation for indoor positioning with BLE 5.1 direction finding

Mavilia F;Barsocchi P;Furfari F;La Rosa D;Girolami M
2023

Abstract

The last decade showed a clear technological trend toward the adoption of heterogeneous source of information, combined with data-fusion strategies to increase the performance of indoor localization systems. In this respect, the adoption of short-range network protocols such as WiFi and Bluetooth represent a common approach. We investigate, in this work, the use of Bluetooth 5.1 Direction Finding specification to test an indoor localization system solely based on the estimated Angle of Arrival (AoA) between an anchor and a receiver. We first detail our experimental data collection campaign and the adopted hardware. Then, we study not only the accuracy of the estimated angles on two reference planes but also the localization error introduced with the proposed algorithm by varying the body orientation of the target user, namely North, South, West, Est. Experimental results in a real-world indoor environment show an average localization error of 2.08m with only 1 anchor node and 5° of AoA' error for all 28 monitored locations. We also identify regions in which the AoA estimation rapidly decreases, giving rise to the possibility of identifying the boundaries of the adopted technology.
2023
Istituto di Scienza e Tecnologie dell'Informazione "Alessandro Faedo" - ISTI
978-1-5386-7462-8
Bluetooth 5.1
Angle of Arrival
Indoor Localization
Proximity
Human Posture
File in questo prodotto:
File Dimensione Formato  
prod_488172-doc_203005.pdf

solo utenti autorizzati

Descrizione: On the Analysis of Body Orientation for Indoor Positioning with BLE 5.1 Direction Finding
Tipologia: Versione Editoriale (PDF)
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 1.87 MB
Formato Adobe PDF
1.87 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
prod_488172-doc_203004.pdf

accesso aperto

Descrizione: Preprint - On the Analysis of Body Orientation for Indoor Positioning with BLE 5.1 Direction Finding
Tipologia: Documento in Pre-print
Licenza: Creative commons
Dimensione 1.79 MB
Formato Adobe PDF
1.79 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/437256
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? ND
social impact