Physicians and patients often come from different backgrounds and have varying levels of education, which can result in communication difficulties in the healthcare process. To address this expertise gap, we present a "Text Style Transfer" system. Our system uses Semantic Textual Similarity techniques based on Sentence Transformers models to create pseudo-parallel datasets from a large, non-parallel corpus of lay and expert texts. This approach allowed us to train a denoising autoencoder model (BART), overcoming the limitations of previous systems. Our extensive analysis, which includes both automatic metrics and human evaluations from both lay (patients) and expert (physicians) individuals, shows that our system outperforms state-of-the-art models and is comparable to human-provided gold references in some cases.

A text style transfer system for reducing the physician-patient expertise gap: An analysis with automatic and human evaluations

Felice Dell'Orletta;Mario Merone;
2023

Abstract

Physicians and patients often come from different backgrounds and have varying levels of education, which can result in communication difficulties in the healthcare process. To address this expertise gap, we present a "Text Style Transfer" system. Our system uses Semantic Textual Similarity techniques based on Sentence Transformers models to create pseudo-parallel datasets from a large, non-parallel corpus of lay and expert texts. This approach allowed us to train a denoising autoencoder model (BART), overcoming the limitations of previous systems. Our extensive analysis, which includes both automatic metrics and human evaluations from both lay (patients) and expert (physicians) individuals, shows that our system outperforms state-of-the-art models and is comparable to human-provided gold references in some cases.
Campo DC Valore Lingua
dc.authority.ancejournal EXPERT SYSTEMS WITH APPLICATIONS en
dc.authority.orgunit Istituto di linguistica computazionale "Antonio Zampolli" - ILC en
dc.authority.people Luca Bacco en
dc.authority.people Felice Dell'Orletta en
dc.authority.people Huiyuan Lai en
dc.authority.people Mario Merone en
dc.authority.people Malvina Nissim en
dc.collection.id.s b3f88f24-048a-4e43-8ab1-6697b90e068e *
dc.collection.name 01.01 Articolo in rivista *
dc.contributor.appartenenza Istituto di linguistica computazionale "Antonio Zampolli" - ILC *
dc.contributor.appartenenza.mi 918 *
dc.contributor.area Non assegn *
dc.date.accessioned 2024/02/20 06:07:30 -
dc.date.available 2024/02/20 06:07:30 -
dc.date.firstsubmission 2024/12/16 15:06:43 *
dc.date.issued 2023 -
dc.date.submission 2025/01/24 18:37:38 *
dc.description.abstracteng Physicians and patients often come from different backgrounds and have varying levels of education, which can result in communication difficulties in the healthcare process. To address this expertise gap, we present a "Text Style Transfer" system. Our system uses Semantic Textual Similarity techniques based on Sentence Transformers models to create pseudo-parallel datasets from a large, non-parallel corpus of lay and expert texts. This approach allowed us to train a denoising autoencoder model (BART), overcoming the limitations of previous systems. Our extensive analysis, which includes both automatic metrics and human evaluations from both lay (patients) and expert (physicians) individuals, shows that our system outperforms state-of-the-art models and is comparable to human-provided gold references in some cases. -
dc.description.affiliations Università Campus Bio-Medico di Roma, Department of Engineering; Istituto di Linguistica Computazionale "Antonio Zampolli"; University of Groningen, The Netherlands; Università Campus Bio-Medico di Roma, Department of Engineering; University of Groningen, The Netherlands; -
dc.description.allpeople Bacco, Luca; Dell'Orletta, Felice; Lai, Huiyuan; Merone, Mario; Nissim, Malvina -
dc.description.allpeopleoriginal Luca Bacco, Felice Dell'Orletta, Huiyuan Lai, Mario Merone, Malvina Nissim en
dc.description.fulltext restricted en
dc.description.numberofauthors 5 -
dc.identifier.doi 10.1016/j.eswa.2023.120874 en
dc.identifier.isi WOS:001039858600001 -
dc.identifier.scopus 2-s2.0-85165158406 -
dc.identifier.uri https://hdl.handle.net/20.500.14243/439016 -
dc.identifier.url https://www.sciencedirect.com/science/article/pii/S0957417423013763 en
dc.language.iso eng en
dc.miur.last.status.update 2024-12-16T14:07:07Z *
dc.relation.firstpage 1 en
dc.relation.lastpage 18 en
dc.relation.numberofpages 18 en
dc.relation.volume 233 en
dc.subject.keywordseng Natural language processing -
dc.subject.keywordseng Text style transfer -
dc.subject.keywordseng Text simplification -
dc.subject.singlekeyword Natural language processing *
dc.subject.singlekeyword Text style transfer *
dc.subject.singlekeyword Text simplification *
dc.title A text style transfer system for reducing the physician-patient expertise gap: An analysis with automatic and human evaluations en
dc.type.driver info:eu-repo/semantics/article -
dc.type.full 01 Contributo su Rivista::01.01 Articolo in rivista it
dc.type.miur 262 -
dc.type.referee Esperti anonimi en
dc.ugov.descaux1 488201 -
iris.isi.extIssued 2023 -
iris.isi.extTitle A text style transfer system for reducing the physician-patient expertise gap: An analysis with automatic and human evaluations -
iris.mediafilter.data 2025/04/03 04:01:27 *
iris.orcid.lastModifiedDate 2025/04/24 01:11:28 *
iris.orcid.lastModifiedMillisecond 1745449888291 *
iris.scopus.extIssued 2023 -
iris.scopus.extTitle A text style transfer system for reducing the physician–patient expertise gap: An analysis with automatic and human evaluations -
iris.sitodocente.maxattempts 1 -
iris.unpaywall.bestoahost repository *
iris.unpaywall.bestoaversion publishedVersion *
iris.unpaywall.doi 10.1016/j.eswa.2023.120874 *
iris.unpaywall.hosttype repository *
iris.unpaywall.isoa true *
iris.unpaywall.journalisindoaj false *
iris.unpaywall.landingpage https://pure.rug.nl/ws/files/739278046/1-s2.0-S0957417423013763-main.pdf *
iris.unpaywall.license other-oa *
iris.unpaywall.metadataCallLastModified 26/04/2025 05:33:11 -
iris.unpaywall.metadataCallLastModifiedMillisecond 1745638391691 -
iris.unpaywall.oastatus green *
iris.unpaywall.pdfurl https://pure.rug.nl/ws/files/739278046/1-s2.0-S0957417423013763-main.pdf *
isi.authority.ancejournal EXPERT SYSTEMS WITH APPLICATIONS###0957-4174 *
isi.category PE *
isi.category IQ *
isi.category EP *
isi.contributor.affiliation University Campus Bio-Medico - Rome Italy -
isi.contributor.affiliation Consiglio Nazionale delle Ricerche (CNR) -
isi.contributor.affiliation University of Groningen -
isi.contributor.affiliation University Campus Bio-Medico - Rome Italy -
isi.contributor.affiliation University of Groningen -
isi.contributor.country Italy -
isi.contributor.country Italy -
isi.contributor.country Netherlands -
isi.contributor.country Italy -
isi.contributor.country Netherlands -
isi.contributor.name Luca -
isi.contributor.name Felice -
isi.contributor.name Huiyuan -
isi.contributor.name Mario -
isi.contributor.name Malvina -
isi.contributor.researcherId AHA-7493-2022 -
isi.contributor.researcherId AAX-1864-2020 -
isi.contributor.researcherId DVN-1551-2022 -
isi.contributor.researcherId AAA-8945-2019 -
isi.contributor.researcherId FOT-6668-2022 -
isi.contributor.subaffiliation Dept Engn -
isi.contributor.subaffiliation Ist Linguist Computaz Antonio Zampolli -
isi.contributor.subaffiliation CLCG -
isi.contributor.subaffiliation Dept Engn -
isi.contributor.subaffiliation CLCG -
isi.contributor.surname Bacco -
isi.contributor.surname Dell'Orletta -
isi.contributor.surname Lai -
isi.contributor.surname Merone -
isi.contributor.surname Nissim -
isi.date.issued 2023 *
isi.description.abstracteng Physicians and patients often come from different backgrounds and have varying levels of education, which can result in communication difficulties in the healthcare process. To address this expertise gap, we present a "Text Style Transfer'' system. Our system uses Semantic Textual Similarity techniques based on Sentence Transformers models to create pseudo-parallel datasets from a large, non-parallel corpus of lay and expert texts. This approach allowed us to train a denoising autoencoder model (BART), overcoming the limitations of previous systems. Our extensive analysis, which includes both automatic metrics and human evaluations from both lay (patients) and expert (physicians) individuals, shows that our system outperforms state-of-the-art models and is comparable to human-provided gold references in some cases. *
isi.description.allpeopleoriginal Bacco, L; Dell'Orletta, F; Lai, HY; Merone, M; Nissim, M; *
isi.document.sourcetype WOS.SCI *
isi.document.type Article *
isi.document.types Article *
isi.identifier.doi 10.1016/j.eswa.2023.120874 *
isi.identifier.eissn 1873-6793 *
isi.identifier.isi WOS:001039858600001 *
isi.journal.journaltitle EXPERT SYSTEMS WITH APPLICATIONS *
isi.journal.journaltitleabbrev EXPERT SYST APPL *
isi.language.original English *
isi.publisher.place THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND *
isi.relation.volume 233 *
isi.title A text style transfer system for reducing the physician-patient expertise gap: An analysis with automatic and human evaluations *
scopus.authority.ancejournal EXPERT SYSTEMS WITH APPLICATIONS###0957-4174 *
scopus.category 2200 *
scopus.category 1706 *
scopus.category 1702 *
scopus.contributor.affiliation Webmonks S.r.l. -
scopus.contributor.affiliation National Research Council -
scopus.contributor.affiliation University of Groningen -
scopus.contributor.affiliation Department of Engineering -
scopus.contributor.affiliation University of Groningen -
scopus.contributor.afid 128135617 -
scopus.contributor.afid 60008941 -
scopus.contributor.afid 60010023 -
scopus.contributor.afid 60005308 -
scopus.contributor.afid 60010023 -
scopus.contributor.auid 57220927387 -
scopus.contributor.auid 57540567000 -
scopus.contributor.auid 57222015938 -
scopus.contributor.auid 56102657200 -
scopus.contributor.auid 8281949100 -
scopus.contributor.country Italy -
scopus.contributor.country Italy -
scopus.contributor.country Netherlands -
scopus.contributor.country Italy -
scopus.contributor.country Netherlands -
scopus.contributor.dptid 129971026 -
scopus.contributor.dptid 114087935 -
scopus.contributor.dptid -
scopus.contributor.dptid 116307659 -
scopus.contributor.dptid -
scopus.contributor.name Luca -
scopus.contributor.name Felice -
scopus.contributor.name Huiyuan -
scopus.contributor.name Mario -
scopus.contributor.name Malvina -
scopus.contributor.subaffiliation R&D Lab; -
scopus.contributor.subaffiliation ItaliaNLP Lab;Istituto di Linguistica Computazionale “Antonio Zampolli”; -
scopus.contributor.subaffiliation CLCG; -
scopus.contributor.subaffiliation Unit of Computer Systems and Bioinformatics;Università Campus Bio-Medico di Roma; -
scopus.contributor.subaffiliation CLCG; -
scopus.contributor.surname Bacco -
scopus.contributor.surname Dell'Orletta -
scopus.contributor.surname Lai -
scopus.contributor.surname Merone -
scopus.contributor.surname Nissim -
scopus.date.issued 2023 *
scopus.description.abstracteng Physicians and patients often come from different backgrounds and have varying levels of education, which can result in communication difficulties in the healthcare process. To address this expertise gap, we present a “Text Style Transfer” system. Our system uses Semantic Textual Similarity techniques based on Sentence Transformers models to create pseudo-parallel datasets from a large, non-parallel corpus of lay and expert texts. This approach allowed us to train a denoising autoencoder model (BART), overcoming the limitations of previous systems. Our extensive analysis, which includes both automatic metrics and human evaluations from both lay (patients) and expert (physicians) individuals, shows that our system outperforms state-of-the-art models and is comparable to human-provided gold references in some cases. *
scopus.description.allpeopleoriginal Bacco L.; Dell'Orletta F.; Lai H.; Merone M.; Nissim M. *
scopus.differences scopus.subject.keywords *
scopus.differences scopus.description.allpeopleoriginal *
scopus.differences scopus.description.abstracteng *
scopus.differences scopus.title *
scopus.document.type ar *
scopus.document.types ar *
scopus.identifier.doi 10.1016/j.eswa.2023.120874 *
scopus.identifier.pui 2025594905 *
scopus.identifier.scopus 2-s2.0-85165158406 *
scopus.journal.sourceid 24201 *
scopus.language.iso eng *
scopus.publisher.name Elsevier Ltd *
scopus.relation.article 120874 *
scopus.relation.volume 233 *
scopus.subject.keywords Healthcare; Natural language processing; Semantic textual similarity; Text simplification; Text style transfer; *
scopus.title A text style transfer system for reducing the physician–patient expertise gap: An analysis with automatic and human evaluations *
scopus.titleeng A text style transfer system for reducing the physician–patient expertise gap: An analysis with automatic and human evaluations *
Appare nelle tipologie: 01.01 Articolo in rivista
File in questo prodotto:
File Dimensione Formato  
1-s2.0-S0957417423013763-main-4.pdf

solo utenti autorizzati

Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 2.4 MB
Formato Adobe PDF
2.4 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/439016
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 7
  • ???jsp.display-item.citation.isi??? 4
social impact