Physicians and patients often come from different backgrounds and have varying levels of education, which can result in communication difficulties in the healthcare process. To address this expertise gap, we present a "Text Style Transfer" system. Our system uses Semantic Textual Similarity techniques based on Sentence Transformers models to create pseudo-parallel datasets from a large, non-parallel corpus of lay and expert texts. This approach allowed us to train a denoising autoencoder model (BART), overcoming the limitations of previous systems. Our extensive analysis, which includes both automatic metrics and human evaluations from both lay (patients) and expert (physicians) individuals, shows that our system outperforms state-of-the-art models and is comparable to human-provided gold references in some cases.
A text style transfer system for reducing the physician-patient expertise gap: An analysis with automatic and human evaluations
Felice Dell'Orletta;Mario Merone;
2023
Abstract
Physicians and patients often come from different backgrounds and have varying levels of education, which can result in communication difficulties in the healthcare process. To address this expertise gap, we present a "Text Style Transfer" system. Our system uses Semantic Textual Similarity techniques based on Sentence Transformers models to create pseudo-parallel datasets from a large, non-parallel corpus of lay and expert texts. This approach allowed us to train a denoising autoencoder model (BART), overcoming the limitations of previous systems. Our extensive analysis, which includes both automatic metrics and human evaluations from both lay (patients) and expert (physicians) individuals, shows that our system outperforms state-of-the-art models and is comparable to human-provided gold references in some cases.| Campo DC | Valore | Lingua |
|---|---|---|
| dc.authority.ancejournal | EXPERT SYSTEMS WITH APPLICATIONS | en |
| dc.authority.orgunit | Istituto di linguistica computazionale "Antonio Zampolli" - ILC | en |
| dc.authority.people | Luca Bacco | en |
| dc.authority.people | Felice Dell'Orletta | en |
| dc.authority.people | Huiyuan Lai | en |
| dc.authority.people | Mario Merone | en |
| dc.authority.people | Malvina Nissim | en |
| dc.collection.id.s | b3f88f24-048a-4e43-8ab1-6697b90e068e | * |
| dc.collection.name | 01.01 Articolo in rivista | * |
| dc.contributor.appartenenza | Istituto di linguistica computazionale "Antonio Zampolli" - ILC | * |
| dc.contributor.appartenenza.mi | 918 | * |
| dc.contributor.area | Non assegn | * |
| dc.date.accessioned | 2024/02/20 06:07:30 | - |
| dc.date.available | 2024/02/20 06:07:30 | - |
| dc.date.firstsubmission | 2024/12/16 15:06:43 | * |
| dc.date.issued | 2023 | - |
| dc.date.submission | 2025/01/24 18:37:38 | * |
| dc.description.abstracteng | Physicians and patients often come from different backgrounds and have varying levels of education, which can result in communication difficulties in the healthcare process. To address this expertise gap, we present a "Text Style Transfer" system. Our system uses Semantic Textual Similarity techniques based on Sentence Transformers models to create pseudo-parallel datasets from a large, non-parallel corpus of lay and expert texts. This approach allowed us to train a denoising autoencoder model (BART), overcoming the limitations of previous systems. Our extensive analysis, which includes both automatic metrics and human evaluations from both lay (patients) and expert (physicians) individuals, shows that our system outperforms state-of-the-art models and is comparable to human-provided gold references in some cases. | - |
| dc.description.affiliations | Università Campus Bio-Medico di Roma, Department of Engineering; Istituto di Linguistica Computazionale "Antonio Zampolli"; University of Groningen, The Netherlands; Università Campus Bio-Medico di Roma, Department of Engineering; University of Groningen, The Netherlands; | - |
| dc.description.allpeople | Bacco, Luca; Dell'Orletta, Felice; Lai, Huiyuan; Merone, Mario; Nissim, Malvina | - |
| dc.description.allpeopleoriginal | Luca Bacco, Felice Dell'Orletta, Huiyuan Lai, Mario Merone, Malvina Nissim | en |
| dc.description.fulltext | restricted | en |
| dc.description.numberofauthors | 5 | - |
| dc.identifier.doi | 10.1016/j.eswa.2023.120874 | en |
| dc.identifier.isi | WOS:001039858600001 | - |
| dc.identifier.scopus | 2-s2.0-85165158406 | - |
| dc.identifier.uri | https://hdl.handle.net/20.500.14243/439016 | - |
| dc.identifier.url | https://www.sciencedirect.com/science/article/pii/S0957417423013763 | en |
| dc.language.iso | eng | en |
| dc.miur.last.status.update | 2024-12-16T14:07:07Z | * |
| dc.relation.firstpage | 1 | en |
| dc.relation.lastpage | 18 | en |
| dc.relation.numberofpages | 18 | en |
| dc.relation.volume | 233 | en |
| dc.subject.keywordseng | Natural language processing | - |
| dc.subject.keywordseng | Text style transfer | - |
| dc.subject.keywordseng | Text simplification | - |
| dc.subject.singlekeyword | Natural language processing | * |
| dc.subject.singlekeyword | Text style transfer | * |
| dc.subject.singlekeyword | Text simplification | * |
| dc.title | A text style transfer system for reducing the physician-patient expertise gap: An analysis with automatic and human evaluations | en |
| dc.type.driver | info:eu-repo/semantics/article | - |
| dc.type.full | 01 Contributo su Rivista::01.01 Articolo in rivista | it |
| dc.type.miur | 262 | - |
| dc.type.referee | Esperti anonimi | en |
| dc.ugov.descaux1 | 488201 | - |
| iris.isi.extIssued | 2023 | - |
| iris.isi.extTitle | A text style transfer system for reducing the physician-patient expertise gap: An analysis with automatic and human evaluations | - |
| iris.mediafilter.data | 2025/04/03 04:01:27 | * |
| iris.orcid.lastModifiedDate | 2025/04/24 01:11:28 | * |
| iris.orcid.lastModifiedMillisecond | 1745449888291 | * |
| iris.scopus.extIssued | 2023 | - |
| iris.scopus.extTitle | A text style transfer system for reducing the physician–patient expertise gap: An analysis with automatic and human evaluations | - |
| iris.sitodocente.maxattempts | 1 | - |
| iris.unpaywall.bestoahost | repository | * |
| iris.unpaywall.bestoaversion | publishedVersion | * |
| iris.unpaywall.doi | 10.1016/j.eswa.2023.120874 | * |
| iris.unpaywall.hosttype | repository | * |
| iris.unpaywall.isoa | true | * |
| iris.unpaywall.journalisindoaj | false | * |
| iris.unpaywall.landingpage | https://pure.rug.nl/ws/files/739278046/1-s2.0-S0957417423013763-main.pdf | * |
| iris.unpaywall.license | other-oa | * |
| iris.unpaywall.metadataCallLastModified | 26/04/2025 05:33:11 | - |
| iris.unpaywall.metadataCallLastModifiedMillisecond | 1745638391691 | - |
| iris.unpaywall.oastatus | green | * |
| iris.unpaywall.pdfurl | https://pure.rug.nl/ws/files/739278046/1-s2.0-S0957417423013763-main.pdf | * |
| isi.authority.ancejournal | EXPERT SYSTEMS WITH APPLICATIONS###0957-4174 | * |
| isi.category | PE | * |
| isi.category | IQ | * |
| isi.category | EP | * |
| isi.contributor.affiliation | University Campus Bio-Medico - Rome Italy | - |
| isi.contributor.affiliation | Consiglio Nazionale delle Ricerche (CNR) | - |
| isi.contributor.affiliation | University of Groningen | - |
| isi.contributor.affiliation | University Campus Bio-Medico - Rome Italy | - |
| isi.contributor.affiliation | University of Groningen | - |
| isi.contributor.country | Italy | - |
| isi.contributor.country | Italy | - |
| isi.contributor.country | Netherlands | - |
| isi.contributor.country | Italy | - |
| isi.contributor.country | Netherlands | - |
| isi.contributor.name | Luca | - |
| isi.contributor.name | Felice | - |
| isi.contributor.name | Huiyuan | - |
| isi.contributor.name | Mario | - |
| isi.contributor.name | Malvina | - |
| isi.contributor.researcherId | AHA-7493-2022 | - |
| isi.contributor.researcherId | AAX-1864-2020 | - |
| isi.contributor.researcherId | DVN-1551-2022 | - |
| isi.contributor.researcherId | AAA-8945-2019 | - |
| isi.contributor.researcherId | FOT-6668-2022 | - |
| isi.contributor.subaffiliation | Dept Engn | - |
| isi.contributor.subaffiliation | Ist Linguist Computaz Antonio Zampolli | - |
| isi.contributor.subaffiliation | CLCG | - |
| isi.contributor.subaffiliation | Dept Engn | - |
| isi.contributor.subaffiliation | CLCG | - |
| isi.contributor.surname | Bacco | - |
| isi.contributor.surname | Dell'Orletta | - |
| isi.contributor.surname | Lai | - |
| isi.contributor.surname | Merone | - |
| isi.contributor.surname | Nissim | - |
| isi.date.issued | 2023 | * |
| isi.description.abstracteng | Physicians and patients often come from different backgrounds and have varying levels of education, which can result in communication difficulties in the healthcare process. To address this expertise gap, we present a "Text Style Transfer'' system. Our system uses Semantic Textual Similarity techniques based on Sentence Transformers models to create pseudo-parallel datasets from a large, non-parallel corpus of lay and expert texts. This approach allowed us to train a denoising autoencoder model (BART), overcoming the limitations of previous systems. Our extensive analysis, which includes both automatic metrics and human evaluations from both lay (patients) and expert (physicians) individuals, shows that our system outperforms state-of-the-art models and is comparable to human-provided gold references in some cases. | * |
| isi.description.allpeopleoriginal | Bacco, L; Dell'Orletta, F; Lai, HY; Merone, M; Nissim, M; | * |
| isi.document.sourcetype | WOS.SCI | * |
| isi.document.type | Article | * |
| isi.document.types | Article | * |
| isi.identifier.doi | 10.1016/j.eswa.2023.120874 | * |
| isi.identifier.eissn | 1873-6793 | * |
| isi.identifier.isi | WOS:001039858600001 | * |
| isi.journal.journaltitle | EXPERT SYSTEMS WITH APPLICATIONS | * |
| isi.journal.journaltitleabbrev | EXPERT SYST APPL | * |
| isi.language.original | English | * |
| isi.publisher.place | THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND | * |
| isi.relation.volume | 233 | * |
| isi.title | A text style transfer system for reducing the physician-patient expertise gap: An analysis with automatic and human evaluations | * |
| scopus.authority.ancejournal | EXPERT SYSTEMS WITH APPLICATIONS###0957-4174 | * |
| scopus.category | 2200 | * |
| scopus.category | 1706 | * |
| scopus.category | 1702 | * |
| scopus.contributor.affiliation | Webmonks S.r.l. | - |
| scopus.contributor.affiliation | National Research Council | - |
| scopus.contributor.affiliation | University of Groningen | - |
| scopus.contributor.affiliation | Department of Engineering | - |
| scopus.contributor.affiliation | University of Groningen | - |
| scopus.contributor.afid | 128135617 | - |
| scopus.contributor.afid | 60008941 | - |
| scopus.contributor.afid | 60010023 | - |
| scopus.contributor.afid | 60005308 | - |
| scopus.contributor.afid | 60010023 | - |
| scopus.contributor.auid | 57220927387 | - |
| scopus.contributor.auid | 57540567000 | - |
| scopus.contributor.auid | 57222015938 | - |
| scopus.contributor.auid | 56102657200 | - |
| scopus.contributor.auid | 8281949100 | - |
| scopus.contributor.country | Italy | - |
| scopus.contributor.country | Italy | - |
| scopus.contributor.country | Netherlands | - |
| scopus.contributor.country | Italy | - |
| scopus.contributor.country | Netherlands | - |
| scopus.contributor.dptid | 129971026 | - |
| scopus.contributor.dptid | 114087935 | - |
| scopus.contributor.dptid | - | |
| scopus.contributor.dptid | 116307659 | - |
| scopus.contributor.dptid | - | |
| scopus.contributor.name | Luca | - |
| scopus.contributor.name | Felice | - |
| scopus.contributor.name | Huiyuan | - |
| scopus.contributor.name | Mario | - |
| scopus.contributor.name | Malvina | - |
| scopus.contributor.subaffiliation | R&D Lab; | - |
| scopus.contributor.subaffiliation | ItaliaNLP Lab;Istituto di Linguistica Computazionale “Antonio Zampolli”; | - |
| scopus.contributor.subaffiliation | CLCG; | - |
| scopus.contributor.subaffiliation | Unit of Computer Systems and Bioinformatics;Università Campus Bio-Medico di Roma; | - |
| scopus.contributor.subaffiliation | CLCG; | - |
| scopus.contributor.surname | Bacco | - |
| scopus.contributor.surname | Dell'Orletta | - |
| scopus.contributor.surname | Lai | - |
| scopus.contributor.surname | Merone | - |
| scopus.contributor.surname | Nissim | - |
| scopus.date.issued | 2023 | * |
| scopus.description.abstracteng | Physicians and patients often come from different backgrounds and have varying levels of education, which can result in communication difficulties in the healthcare process. To address this expertise gap, we present a “Text Style Transfer” system. Our system uses Semantic Textual Similarity techniques based on Sentence Transformers models to create pseudo-parallel datasets from a large, non-parallel corpus of lay and expert texts. This approach allowed us to train a denoising autoencoder model (BART), overcoming the limitations of previous systems. Our extensive analysis, which includes both automatic metrics and human evaluations from both lay (patients) and expert (physicians) individuals, shows that our system outperforms state-of-the-art models and is comparable to human-provided gold references in some cases. | * |
| scopus.description.allpeopleoriginal | Bacco L.; Dell'Orletta F.; Lai H.; Merone M.; Nissim M. | * |
| scopus.differences | scopus.subject.keywords | * |
| scopus.differences | scopus.description.allpeopleoriginal | * |
| scopus.differences | scopus.description.abstracteng | * |
| scopus.differences | scopus.title | * |
| scopus.document.type | ar | * |
| scopus.document.types | ar | * |
| scopus.identifier.doi | 10.1016/j.eswa.2023.120874 | * |
| scopus.identifier.pui | 2025594905 | * |
| scopus.identifier.scopus | 2-s2.0-85165158406 | * |
| scopus.journal.sourceid | 24201 | * |
| scopus.language.iso | eng | * |
| scopus.publisher.name | Elsevier Ltd | * |
| scopus.relation.article | 120874 | * |
| scopus.relation.volume | 233 | * |
| scopus.subject.keywords | Healthcare; Natural language processing; Semantic textual similarity; Text simplification; Text style transfer; | * |
| scopus.title | A text style transfer system for reducing the physician–patient expertise gap: An analysis with automatic and human evaluations | * |
| scopus.titleeng | A text style transfer system for reducing the physician–patient expertise gap: An analysis with automatic and human evaluations | * |
| Appare nelle tipologie: | 01.01 Articolo in rivista | |
| File | Dimensione | Formato | |
|---|---|---|---|
|
1-s2.0-S0957417423013763-main-4.pdf
solo utenti autorizzati
Licenza:
NON PUBBLICO - Accesso privato/ristretto
Dimensione
2.4 MB
Formato
Adobe PDF
|
2.4 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.


