The explosion of smartphones and cameras has led to a vast production of multimedia data. Consequently, Artificial Intelligence-based tools for automatically understanding and exploring these data have recently gained much attention. In this short paper, we report some activities of the Artificial Intelligence for Media and Humanities (AIMH) laboratory of the ISTI-CNR, tackling some challenges in the field of Computer Vision for the automatic understanding of visual data and for novel interactive tools aimed at multimedia data exploration. Specifically, we provide innovative solutions based on Deep Learning techniques carrying out typical vision tasks such as object detection and visual counting, with particular emphasis on scenarios characterized by scarcity of labeled data needed for the supervised training and on environments with limited power resources imposing miniaturization of the models. Furthermore, we describe VISIONE, our large-scale video search system designed to search extensive multimedia databases in an interactive and user-friendly manner.

AIMH Lab 2022 activities for Vision

Ciampi L;Amato G;Bolettieri P;Carrara F;Di Benedetto M;Falchi F;Gennaro C;Messina N;Vadicamo L;Vairo C
2023

Abstract

The explosion of smartphones and cameras has led to a vast production of multimedia data. Consequently, Artificial Intelligence-based tools for automatically understanding and exploring these data have recently gained much attention. In this short paper, we report some activities of the Artificial Intelligence for Media and Humanities (AIMH) laboratory of the ISTI-CNR, tackling some challenges in the field of Computer Vision for the automatic understanding of visual data and for novel interactive tools aimed at multimedia data exploration. Specifically, we provide innovative solutions based on Deep Learning techniques carrying out typical vision tasks such as object detection and visual counting, with particular emphasis on scenarios characterized by scarcity of labeled data needed for the supervised training and on environments with limited power resources imposing miniaturization of the models. Furthermore, we describe VISIONE, our large-scale video search system designed to search extensive multimedia databases in an interactive and user-friendly manner.
2023
Istituto di Scienza e Tecnologie dell'Informazione "Alessandro Faedo" - ISTI
Computer vision
Deep Learning
Large-scale video retrieval
Learning with scarce data
Multimedia understanding
File in questo prodotto:
File Dimensione Formato  
prod_488206-doc_203032.pdf

accesso aperto

Descrizione: AIMH Lab 2022 activities for Vision
Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 2.17 MB
Formato Adobe PDF
2.17 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/439021
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
social impact