Raman microscopy is one of the methods that could be used for future post-mortem analyses of samples extracted from ITER plasma facing components. This study shows that this technique is useful for studying tungsten-based materials containing impurities including oxides and nitrides. Here, we apply pulsed laser deposition and DC argon glow discharges to produce tungsten-containing synthetic films (compact, and porous), and nanoparticles, and investigate the influence of their morphology on the measured Raman spectra. The amounts of oxygen and/or nitrogen in the films are also investigated. Comparative data are obtained via x-ray Photoelectron Spectroscopy, Atomic Force Microscopy, Electron Microscopies (Scanning and Transmission), Energy Dispersive x-ray spectroscopy, and Time-of-Flight Elastic Recoil Detection Analysis. The power density of the laser beam used to perform the Raman microscopy is varied by up to 4 orders of magnitude (0.01-20 mW ?m-2) so as to investigate the thermal stability of films and nanoparticles. As a first result, we give evidence that Raman microscopy is sensitive enough to detect surface native oxides. Secondly, more tungsten oxides are detected in porous materials and nanoparticles than in compact films, and the intensities of the Raman band correlate to their oxygen content. Thirdly, the thermal stability of these films (i.e. structural and chemical modification under laser heating) is poor when compact films contain a sufficiently large amount of nitrogen. This finding suggests that nitrogen can be substituted by oxygen during Raman laser induced heating occurring in ambient air. Finally, our methodology can be used to rapidly characterize the morphology and chemistry of the samples analyzed, and also to create oxides at the micrometer scale.

Post-mortem analysis of tungsten plasma facing components in tokamaks: Raman microscopy measurements on compact, porous oxide and nitride films and nanoparticles

Dellasega D;Passoni M;
2020

Abstract

Raman microscopy is one of the methods that could be used for future post-mortem analyses of samples extracted from ITER plasma facing components. This study shows that this technique is useful for studying tungsten-based materials containing impurities including oxides and nitrides. Here, we apply pulsed laser deposition and DC argon glow discharges to produce tungsten-containing synthetic films (compact, and porous), and nanoparticles, and investigate the influence of their morphology on the measured Raman spectra. The amounts of oxygen and/or nitrogen in the films are also investigated. Comparative data are obtained via x-ray Photoelectron Spectroscopy, Atomic Force Microscopy, Electron Microscopies (Scanning and Transmission), Energy Dispersive x-ray spectroscopy, and Time-of-Flight Elastic Recoil Detection Analysis. The power density of the laser beam used to perform the Raman microscopy is varied by up to 4 orders of magnitude (0.01-20 mW ?m-2) so as to investigate the thermal stability of films and nanoparticles. As a first result, we give evidence that Raman microscopy is sensitive enough to detect surface native oxides. Secondly, more tungsten oxides are detected in porous materials and nanoparticles than in compact films, and the intensities of the Raman band correlate to their oxygen content. Thirdly, the thermal stability of these films (i.e. structural and chemical modification under laser heating) is poor when compact films contain a sufficiently large amount of nitrogen. This finding suggests that nitrogen can be substituted by oxygen during Raman laser induced heating occurring in ambient air. Finally, our methodology can be used to rapidly characterize the morphology and chemistry of the samples analyzed, and also to create oxides at the micrometer scale.
2020
Istituto per la Scienza e Tecnologia dei Plasmi - ISTP
PLD
Raman spectroscopy
tungsten oxide
tungsten nitride
plasma wall interaction
laser heating
post-mortem analysis
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/441100
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 14
  • ???jsp.display-item.citation.isi??? 13
social impact