Platinum is a promising candidate for the realization of blocking electrical contacts on cadmium-zinc-telluride (CdZnTe or CZT) radiation detectors. However, the poor mechanical adhesion of this metal often shortens the lifetime of the final device. In this work, a simple and effective procedure to obtain robust platinum contacts by electroless deposition is presented. Microscopical analysis revealed the final thickness and composition of the contact layer and its adhesion to the bulk crystal. The blocking nature of the Pt-CdZnTe junction, essential to obtain low noise devices, was confirmed by current-voltage measurements. The planar Pt-CdZnTe-Pt detectors showed good room temperature spectroscopic performance with energy resolution of 4% (2.4 keV) and 3% (3.7 keV) FWHM at 59.5 and 122.1 keV, respectively. Finally, we showed, for the first time, that platinum contacts allow the estimation of the carrier lifetime and mobility of both holes and electrons by using current transient measurements. This demonstrated the optimal hole extraction capability of such contacts.

Improved electroless platinum contacts on CdZnTe X- and γ-rays detectors

Bettelli M.;Sarzi Amade' N.
;
Zanettini S.;Nasi L.;Villani M.;Zappettini A.;
2020

Abstract

Platinum is a promising candidate for the realization of blocking electrical contacts on cadmium-zinc-telluride (CdZnTe or CZT) radiation detectors. However, the poor mechanical adhesion of this metal often shortens the lifetime of the final device. In this work, a simple and effective procedure to obtain robust platinum contacts by electroless deposition is presented. Microscopical analysis revealed the final thickness and composition of the contact layer and its adhesion to the bulk crystal. The blocking nature of the Pt-CdZnTe junction, essential to obtain low noise devices, was confirmed by current-voltage measurements. The planar Pt-CdZnTe-Pt detectors showed good room temperature spectroscopic performance with energy resolution of 4% (2.4 keV) and 3% (3.7 keV) FWHM at 59.5 and 122.1 keV, respectively. Finally, we showed, for the first time, that platinum contacts allow the estimation of the carrier lifetime and mobility of both holes and electrons by using current transient measurements. This demonstrated the optimal hole extraction capability of such contacts.
2020
Istituto dei Materiali per l'Elettronica ed il Magnetismo - IMEM
ELECTRIC-FIELD PROFILE, TRANSIENT-CURRENT, TRANSPORT-PROPERTIES PULSE-SHAPE, CDTE, PERFORMANCE, RESISTIVITY, DEPOSITION, BULK
File in questo prodotto:
File Dimensione Formato  
Improved electroless platinum contacts on CdZnTe X- and γ-rays detectors.pdf

accesso aperto

Descrizione: Articolo
Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 2.42 MB
Formato Adobe PDF
2.42 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/441723
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 9
  • ???jsp.display-item.citation.isi??? 9
social impact