Owing to superior properties, i.e. high hardness, high wear resistance, and weight reduction of transparent ceramics (TCs) over glasses, TCs have shown promising tribological potential for applications such as face shields, explosive ordnance visors, windows for aircraft, spacecraft and, re-entry vehicles, electromagnetic windows, laser igniter windows, screens for smartphones and more. Researchers globally have been attracted to explore more about TCs, considering the tremendously increasing demand over different other transparent materials. The optical quality of TCs is mostly characterized by the in-line transmittance, and the effect of various processing parameters on transmittance has already been studied by various researchers. In this review, the current research progress regarding tribological performance of TCs is compiled. TCs with potential in tribological applications include MgAl2O4, Al2O3, AlON, Lu2O3, c-BN, Y2O3, Si3N4, and SiAlON. The relevant strategies to improve the tribological properties, including microstructures and mechanical properties are comprehensively discussed. In addition, the mechanisms of material removal of different transparent ceramics are also presented. It is well observed that surface fracture comprising three stages is found as one of the dominant wear mechanisms during wear. This review aims to provide some meaningful guidelines for development of transparent ceramics with enhanced wear resistance, while identifying the wear mechanisms in particular wear conditions.
Tribological behavior of transparent ceramics: a review
Jan HostasaWriting – Review & Editing
;Laura SilvestroniWriting – Review & Editing
;Laura EspositoData Curation
;
2022
Abstract
Owing to superior properties, i.e. high hardness, high wear resistance, and weight reduction of transparent ceramics (TCs) over glasses, TCs have shown promising tribological potential for applications such as face shields, explosive ordnance visors, windows for aircraft, spacecraft and, re-entry vehicles, electromagnetic windows, laser igniter windows, screens for smartphones and more. Researchers globally have been attracted to explore more about TCs, considering the tremendously increasing demand over different other transparent materials. The optical quality of TCs is mostly characterized by the in-line transmittance, and the effect of various processing parameters on transmittance has already been studied by various researchers. In this review, the current research progress regarding tribological performance of TCs is compiled. TCs with potential in tribological applications include MgAl2O4, Al2O3, AlON, Lu2O3, c-BN, Y2O3, Si3N4, and SiAlON. The relevant strategies to improve the tribological properties, including microstructures and mechanical properties are comprehensively discussed. In addition, the mechanisms of material removal of different transparent ceramics are also presented. It is well observed that surface fracture comprising three stages is found as one of the dominant wear mechanisms during wear. This review aims to provide some meaningful guidelines for development of transparent ceramics with enhanced wear resistance, while identifying the wear mechanisms in particular wear conditions.File | Dimensione | Formato | |
---|---|---|---|
Tribological behaviour of transparent ceramics_ A review - uscito su JECS-reduced.pdf
solo utenti autorizzati
Descrizione: Full length article
Tipologia:
Versione Editoriale (PDF)
Licenza:
NON PUBBLICO - Accesso privato/ristretto
Dimensione
1.94 MB
Formato
Adobe PDF
|
1.94 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
TRIBOLOGICAL BEHAVIOUR OF TRANSPARENT CERAMICS.pdf
accesso aperto
Tipologia:
Documento in Pre-print
Licenza:
Creative commons
Dimensione
3.87 MB
Formato
Adobe PDF
|
3.87 MB | Adobe PDF | Visualizza/Apri |
Mittal 2020 JECS post-print reduced.pdf
accesso aperto
Tipologia:
Documento in Post-print
Licenza:
Creative commons
Dimensione
4.82 MB
Formato
Adobe PDF
|
4.82 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.