We prove that positive solutions of the fractional Lane-Emden equation with homogeneous Dirichlet boundary conditions satisfy pointwise estimates in terms of the best constant in Poincaré's inequality on all open sets, and are isolated in $L^1$ on smooth bounded ones, whence we deduce the isolation of the first non-local semilinear eigenvalue .
A non-local semilinear eigenvalue problem
Franzina G
;
2022
Abstract
We prove that positive solutions of the fractional Lane-Emden equation with homogeneous Dirichlet boundary conditions satisfy pointwise estimates in terms of the best constant in Poincaré's inequality on all open sets, and are isolated in $L^1$ on smooth bounded ones, whence we deduce the isolation of the first non-local semilinear eigenvalue .File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
fra-lic_22.pdf
accesso aperto
Tipologia:
Versione Editoriale (PDF)
Licenza:
Altro tipo di licenza
Dimensione
529.32 kB
Formato
Adobe PDF
|
529.32 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.