We prove that positive solutions of the fractional Lane-Emden equation with homogeneous Dirichlet boundary conditions satisfy pointwise estimates in terms of the best constant in Poincaré's inequality on all open sets, and are isolated in $L^1$ on smooth bounded ones, whence we deduce the isolation of the first non-local semilinear eigenvalue .

A non-local semilinear eigenvalue problem

Franzina G
;
2022

Abstract

We prove that positive solutions of the fractional Lane-Emden equation with homogeneous Dirichlet boundary conditions satisfy pointwise estimates in terms of the best constant in Poincaré's inequality on all open sets, and are isolated in $L^1$ on smooth bounded ones, whence we deduce the isolation of the first non-local semilinear eigenvalue .
2022
Istituto Applicazioni del Calcolo ''Mauro Picone''
eigenvalues
constrained critical points
Lane-Emden equation
File in questo prodotto:
File Dimensione Formato  
fra-lic_22.pdf

accesso aperto

Tipologia: Versione Editoriale (PDF)
Licenza: Altro tipo di licenza
Dimensione 529.32 kB
Formato Adobe PDF
529.32 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/443576
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact