Probing tasks are frequently used to evaluate whether the representations of Neural Language Models (NLMs) encode linguistic information. However, it is still questioned if probing classification tasks really enable such investigation or they simply hint for surface patterns in the data. We present a method to investigate this question by comparing the accuracies of a set of probing tasks on gold and automatically generated control datasets. Our results suggest that probing tasks can be used as reliable diagnostic methods to investigate the linguistic information encoded in NLMs representations.

Probing tasks under pressure

Miaschi A;Alzetta C;Brunato D;Dell'Orletta F;Venturi G
2021

Abstract

Probing tasks are frequently used to evaluate whether the representations of Neural Language Models (NLMs) encode linguistic information. However, it is still questioned if probing classification tasks really enable such investigation or they simply hint for surface patterns in the data. We present a method to investigate this question by comparing the accuracies of a set of probing tasks on gold and automatically generated control datasets. Our results suggest that probing tasks can be used as reliable diagnostic methods to investigate the linguistic information encoded in NLMs representations.
Campo DC Valore Lingua
dc.authority.anceserie CEUR WORKSHOP PROCEEDINGS -
dc.authority.anceserie CEUR Workshop Proceedings -
dc.authority.orgunit Istituto di linguistica computazionale "Antonio Zampolli" - ILC -
dc.authority.people Miaschi A it
dc.authority.people Alzetta C it
dc.authority.people Brunato D it
dc.authority.people Dell'Orletta F it
dc.authority.people Venturi G it
dc.collection.id.s 71c7200a-7c5f-4e83-8d57-d3d2ba88f40d *
dc.collection.name 04.01 Contributo in Atti di convegno *
dc.contributor.appartenenza Istituto di linguistica computazionale "Antonio Zampolli" - ILC *
dc.contributor.appartenenza.mi 918 *
dc.date.accessioned 2024/02/19 11:54:22 -
dc.date.available 2024/02/19 11:54:22 -
dc.date.issued 2021 -
dc.description.abstracteng Probing tasks are frequently used to evaluate whether the representations of Neural Language Models (NLMs) encode linguistic information. However, it is still questioned if probing classification tasks really enable such investigation or they simply hint for surface patterns in the data. We present a method to investigate this question by comparing the accuracies of a set of probing tasks on gold and automatically generated control datasets. Our results suggest that probing tasks can be used as reliable diagnostic methods to investigate the linguistic information encoded in NLMs representations. -
dc.description.affiliations Istituto di Linguistica Computazionale (ILC-CNR); Dipartimento di Informatica, Università di Pisa -
dc.description.allpeople Miaschi A.; Alzetta C.; Brunato D.; Dell'Orletta F.; Venturi G. -
dc.description.allpeopleoriginal Miaschi A.; Alzetta C.; Brunato D.; Dell'Orletta F.; Venturi G. -
dc.description.fulltext none en
dc.description.numberofauthors 5 -
dc.identifier.scopus 2-s2.0-85121280147 -
dc.identifier.uri https://hdl.handle.net/20.500.14243/446048 -
dc.identifier.url http://ceur-ws.org/Vol-3033/paper29.pdf -
dc.language.iso eng -
dc.miur.last.status.update 2024-12-20T09:04:17Z *
dc.relation.conferencedate 29/06-01/07/2022 -
dc.relation.conferencename 8th Italian Conference on Computational Linguistics (CLIC-it 2021) -
dc.relation.conferenceplace Milano -
dc.relation.firstpage 1 -
dc.relation.lastpage 7 -
dc.relation.numberofpages 7 -
dc.relation.volume 3033 -
dc.subject.keywords Neural Language Models -
dc.subject.keywords Linguistic probing -
dc.subject.keywords Treebanks -
dc.subject.singlekeyword Neural Language Models *
dc.subject.singlekeyword Linguistic probing *
dc.subject.singlekeyword Treebanks *
dc.title Probing tasks under pressure en
dc.type.driver info:eu-repo/semantics/conferenceObject -
dc.type.full 04 Contributo in convegno::04.01 Contributo in Atti di convegno it
dc.type.miur 273 -
dc.ugov.descaux1 463833 -
iris.orcid.lastModifiedDate 2024/03/15 08:58:44 *
iris.orcid.lastModifiedMillisecond 1710489524615 *
iris.scopus.extIssued 2021 -
iris.scopus.extTitle Probing tasks under pressure -
iris.sitodocente.maxattempts 1 -
scopus.authority.anceserie CEUR WORKSHOP PROCEEDINGS###1613-0073 *
scopus.category 1700 *
scopus.contributor.affiliation University of Pisa -
scopus.contributor.affiliation Pisa ItaliaNLP Lab -
scopus.contributor.affiliation Pisa ItaliaNLP Lab -
scopus.contributor.affiliation Pisa ItaliaNLP Lab -
scopus.contributor.affiliation Pisa ItaliaNLP Lab -
scopus.contributor.afid 60028868 -
scopus.contributor.afid 60008941 -
scopus.contributor.afid 60008941 -
scopus.contributor.afid 60008941 -
scopus.contributor.afid 60008941 -
scopus.contributor.auid 57211678681 -
scopus.contributor.auid 57192938832 -
scopus.contributor.auid 55237740200 -
scopus.contributor.auid 57540567000 -
scopus.contributor.auid 27568199800 -
scopus.contributor.country Italy -
scopus.contributor.country -
scopus.contributor.country -
scopus.contributor.country -
scopus.contributor.country -
scopus.contributor.dptid 109696702 -
scopus.contributor.dptid -
scopus.contributor.dptid -
scopus.contributor.dptid -
scopus.contributor.dptid -
scopus.contributor.name Alessio -
scopus.contributor.name Chiara -
scopus.contributor.name Dominique -
scopus.contributor.name Felice -
scopus.contributor.name Giulia -
scopus.contributor.subaffiliation Department of Computer Science; -
scopus.contributor.subaffiliation Istituto di Linguistica Computazionale Antonio Zampolli; -
scopus.contributor.subaffiliation Istituto di Linguistica Computazionale Antonio Zampolli; -
scopus.contributor.subaffiliation Istituto di Linguistica Computazionale Antonio Zampolli; -
scopus.contributor.subaffiliation Istituto di Linguistica Computazionale Antonio Zampolli; -
scopus.contributor.surname Miaschi -
scopus.contributor.surname Alzetta -
scopus.contributor.surname Brunato -
scopus.contributor.surname Dell'Orletta -
scopus.contributor.surname Venturi -
scopus.date.issued 2021 *
scopus.description.abstracteng Probing tasks are frequently used to evaluate whether the representations of Neural Language Models (NLMs) encode linguistic information. However, it is still questioned if probing classification tasks really enable such investigation or they simply hint for surface patterns in the data. We present a method to investigate this question by comparing the accuracies of a set of probing tasks on gold and automatically generated control datasets. Our results suggest that probing tasks can be used as reliable diagnostic methods to investigate the linguistic information encoded in NLMs representations. *
scopus.description.allpeopleoriginal Miaschi A.; Alzetta C.; Brunato D.; Dell'Orletta F.; Venturi G. *
scopus.differences scopus.relation.conferencename *
scopus.differences scopus.authority.anceserie *
scopus.differences scopus.publisher.name *
scopus.differences scopus.relation.conferencedate *
scopus.differences scopus.relation.conferenceplace *
scopus.document.type cp *
scopus.document.types cp *
scopus.identifier.pui 636650900 *
scopus.identifier.scopus 2-s2.0-85121280147 *
scopus.journal.sourceid 21100218356 *
scopus.language.iso eng *
scopus.publisher.name CEUR-WS *
scopus.relation.conferencedate 2022 *
scopus.relation.conferencename 8th Italian Conference on Computational Linguistics, CLiC-it 2021 *
scopus.relation.conferenceplace Universita degli Studi di Milano-Bicocca, ita *
scopus.relation.volume 3033 *
scopus.title Probing tasks under pressure *
scopus.titleeng Probing tasks under pressure *
Appare nelle tipologie: 04.01 Contributo in Atti di convegno
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/446048
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
social impact