The improvement of clotting factor concentrates (CFCs) has undergone an impressive boost during the last six years. Since 2010, several new recombinant factor (rF)VIII/IX concentrates entered phase I/II/III clinical trials. The improvements are related to the culture of human embryonic kidney (HEK) cells, post-translational glycosylation, PEGylation, and co-expression of the fragment crystallizable (Fc) region of immunoglobulin (Ig)G1 or albumin genes in the manufacturing procedures. The extended half-life (EHL) CFCs allow an increase of the interval between bolus administrations during prophylaxis, a very important advantage for patients with difficulties in venous access. Although the inhibitor risk has not been fully established, phase III studies have provided standard prophylaxis protocols, which, compared with on-demand treatment, have achieved very low annualized bleeding rates (ABRs). The key pharmacokinetics (PK) parameter to tailor patient therapy is clearance, which is more reliable than the half-life of CFCs; the clearance considers the decay rate of the drug concentration-time profile, while the half-life considers only the half concentration of the drug at a given time. To tailor the prophylaxis of hemophilia patients in real-life, we propose two formulae (expressed in terms of the clearance, trough and dose interval between prophylaxis), respectively based on the one- and two-compartmental models (CMs), for the prediction of the optimal single dose of EHL CFCs. Once the data from the time decay of the CFCs are fitted by the one- or two-CMs after an individual PK analysis, such formulae provide to the treater the optimal trade-off among trough and time-intervals between boluses. In this way, a sufficiently long time-interval between bolus administration could be guaranteed for a wider class of patients, with a preassigned level of the trough. Finally, a PK approach using repeated dosing is discussed, and some examples with new EHL CFCs are shown.

Pharmacokinetic-based prediction of real-life dosing of extended half-life clotting factor concentrates on hemophilia

Gherardini Stefano
2018

Abstract

The improvement of clotting factor concentrates (CFCs) has undergone an impressive boost during the last six years. Since 2010, several new recombinant factor (rF)VIII/IX concentrates entered phase I/II/III clinical trials. The improvements are related to the culture of human embryonic kidney (HEK) cells, post-translational glycosylation, PEGylation, and co-expression of the fragment crystallizable (Fc) region of immunoglobulin (Ig)G1 or albumin genes in the manufacturing procedures. The extended half-life (EHL) CFCs allow an increase of the interval between bolus administrations during prophylaxis, a very important advantage for patients with difficulties in venous access. Although the inhibitor risk has not been fully established, phase III studies have provided standard prophylaxis protocols, which, compared with on-demand treatment, have achieved very low annualized bleeding rates (ABRs). The key pharmacokinetics (PK) parameter to tailor patient therapy is clearance, which is more reliable than the half-life of CFCs; the clearance considers the decay rate of the drug concentration-time profile, while the half-life considers only the half concentration of the drug at a given time. To tailor the prophylaxis of hemophilia patients in real-life, we propose two formulae (expressed in terms of the clearance, trough and dose interval between prophylaxis), respectively based on the one- and two-compartmental models (CMs), for the prediction of the optimal single dose of EHL CFCs. Once the data from the time decay of the CFCs are fitted by the one- or two-CMs after an individual PK analysis, such formulae provide to the treater the optimal trade-off among trough and time-intervals between boluses. In this way, a sufficiently long time-interval between bolus administration could be guaranteed for a wider class of patients, with a preassigned level of the trough. Finally, a PK approach using repeated dosing is discussed, and some examples with new EHL CFCs are shown.
2018
Istituto Nazionale di Ottica - INO
ABR
FVIII/IX efficacy
FVIII/IX extended half-life
FVIII/IX tailoring
immunogenicity
pharmacokinetics
pharmacodynamics
switch
venous access
File in questo prodotto:
File Dimensione Formato  
PK_based_prediction_real_life_dosing_TAH_2018.pdf

solo utenti autorizzati

Tipologia: Versione Editoriale (PDF)
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 219.37 kB
Formato Adobe PDF
219.37 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/446100
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 12
social impact