Spontaneous synchronisation is a remarkable collective effect observed in nature, whereby a population of oscillating units, which have diverse natural frequencies and are in weak interaction with one another, evolves to spontaneously exhibit collective oscillations at a common frequency. The Kuramoto model provides the basic analytical framework to study spontaneous synchronisation. The model comprises limit-cycle oscillators with distributed natural frequencies interacting through a mean-field coupling. Although more than forty years have passed since its introduction, the model continues to occupy the centre stage of research in the field of non-linear dynamics and is also widely applied to model diverse physical situations. In this brief review, starting with a derivation of the Kuramoto model and the synchronisation phenomenon it exhibits, we summarise recent results on the study of a generalised Kuramoto model that includes inertial effects and stochastic noise. We describe the dynamics of the generalised model from a different yet a rather useful perspective, namely, that of long-range interacting systems driven out of equilibrium by quenched disordered external torques. A system is said to be long-range interacting if the inter-particle potential decays slowly as a function of distance. Using tools of statistical physics, we highlight the equilibrium and nonequilibrium aspects of the dynamics of the generalised Kuramoto model, and uncover a rather rich and complex phase diagram that it exhibits, which underlines the basic theme of intriguing emergent phenomena that are exhibited by many-body complex systems.

Spontaneous synchronisation and nonequilibrium statistical mechanics of coupled phase oscillators

Gherardini Stefano;Ruffo Stefano
2018

Abstract

Spontaneous synchronisation is a remarkable collective effect observed in nature, whereby a population of oscillating units, which have diverse natural frequencies and are in weak interaction with one another, evolves to spontaneously exhibit collective oscillations at a common frequency. The Kuramoto model provides the basic analytical framework to study spontaneous synchronisation. The model comprises limit-cycle oscillators with distributed natural frequencies interacting through a mean-field coupling. Although more than forty years have passed since its introduction, the model continues to occupy the centre stage of research in the field of non-linear dynamics and is also widely applied to model diverse physical situations. In this brief review, starting with a derivation of the Kuramoto model and the synchronisation phenomenon it exhibits, we summarise recent results on the study of a generalised Kuramoto model that includes inertial effects and stochastic noise. We describe the dynamics of the generalised model from a different yet a rather useful perspective, namely, that of long-range interacting systems driven out of equilibrium by quenched disordered external torques. A system is said to be long-range interacting if the inter-particle potential decays slowly as a function of distance. Using tools of statistical physics, we highlight the equilibrium and nonequilibrium aspects of the dynamics of the generalised Kuramoto model, and uncover a rather rich and complex phase diagram that it exhibits, which underlines the basic theme of intriguing emergent phenomena that are exhibited by many-body complex systems.
2018
Istituto dei Sistemi Complessi - ISC
Synchronisation
statistical physics
nonequilibrium stationary state
phase transition
File in questo prodotto:
File Dimensione Formato  
Spontaneous synchronisation and nonequilibrium_ContempPhys_2018.pdf

solo utenti autorizzati

Descrizione: Spontaneous synchronisation and nonequilibrium statistical mechanics of coupled phase oscillators
Tipologia: Versione Editoriale (PDF)
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 3.88 MB
Formato Adobe PDF
3.88 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/446101
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 10
  • ???jsp.display-item.citation.isi??? 9
social impact