In this short paper, we report the activities of the Artificial Intelligence for Media and Humanities (AIMH) laboratory of the ISTI-CNR related to Trustworthy AI. Artificial Intelligence is becoming more and more pervasive in our society, controlling recommendation systems in social platforms as well as safety-critical systems like autonomous vehicles. In order to be safe and trustworthy, these systems require to be easily interpretable and transparent. On the other hand, it is important to spot fake examples forged by malicious AI generative models to fool humans (through fake news or deep-fakes) or other AI systems (through adversarial examples). This is required to enforce an ethical use of these powerful new technologies. Driven by these concerns, this paper presents three crucial research directions contributing to the study and the development of techniques for reliable, resilient, and explainable deep learning methods. Namely, we report the laboratory activities on the detection of adversarial examples, the use of attentive models as a way towards explainable deep learning, and the detection of deepfakes in social platforms.
AIMH Lab for Trustworthy AI
Messina N;Carrara F;Coccomini D;Falchi F;Gennaro C;Amato G
2022
Abstract
In this short paper, we report the activities of the Artificial Intelligence for Media and Humanities (AIMH) laboratory of the ISTI-CNR related to Trustworthy AI. Artificial Intelligence is becoming more and more pervasive in our society, controlling recommendation systems in social platforms as well as safety-critical systems like autonomous vehicles. In order to be safe and trustworthy, these systems require to be easily interpretable and transparent. On the other hand, it is important to spot fake examples forged by malicious AI generative models to fool humans (through fake news or deep-fakes) or other AI systems (through adversarial examples). This is required to enforce an ethical use of these powerful new technologies. Driven by these concerns, this paper presents three crucial research directions contributing to the study and the development of techniques for reliable, resilient, and explainable deep learning methods. Namely, we report the laboratory activities on the detection of adversarial examples, the use of attentive models as a way towards explainable deep learning, and the detection of deepfakes in social platforms.File | Dimensione | Formato | |
---|---|---|---|
prod_463969-doc_181848.pdf
accesso aperto
Descrizione: AIMH Lab for Trustworthy AI
Tipologia:
Versione Editoriale (PDF)
Dimensione
2.1 MB
Formato
Adobe PDF
|
2.1 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.