With the aim of presenting the processes governing the Laser-Induced Periodic Surface Structures (LIPSS), its main theoretical models have been reported. More emphasis is given to those suitable for clarifying the experimental structures observed on the surface of wide bandgap semiconductors (WBS) and dielectric materials. The role played by radiation surface electromagnetic waves as well as Surface Plasmon Polaritons in determining both Low and High Spatial Frequency LIPSS is briefly discussed, together with some experimental evidence. Non-conventional techniques for LIPSS formation are concisely introduced to point out the high technical possibility of enhancing the homogeneity of surface structures as well as tuning the electronic properties driven by point defects induced in WBS. Among these, double- or multiple-fs-pulse irradiations are shown to be suitable for providing further insight into the LIPSS process together with fine control on the formed surface structures. Modifications occurring by LIPSS on surfaces of WBS and dielectrics display high potentialities for their cross-cutting technological features and wide applications in which the main surface and electronic properties can be engineered. By these assessments, the employment of such nanostructured materials in innovative devices could be envisaged.

LIPSS Applied to Wide Bandgap Semiconductors and Dielectrics: Assessment and Future Perspectives

Matteo Mastellone;Maria Lucia Pace;Patrizia Dolce;Donato Mollica;Stefano Orlando;Antonio Santagata;Valerio Serpente;Alessandro Bellucci;Marco Girolami;Daniele Maria Trucchi
2022

Abstract

With the aim of presenting the processes governing the Laser-Induced Periodic Surface Structures (LIPSS), its main theoretical models have been reported. More emphasis is given to those suitable for clarifying the experimental structures observed on the surface of wide bandgap semiconductors (WBS) and dielectric materials. The role played by radiation surface electromagnetic waves as well as Surface Plasmon Polaritons in determining both Low and High Spatial Frequency LIPSS is briefly discussed, together with some experimental evidence. Non-conventional techniques for LIPSS formation are concisely introduced to point out the high technical possibility of enhancing the homogeneity of surface structures as well as tuning the electronic properties driven by point defects induced in WBS. Among these, double- or multiple-fs-pulse irradiations are shown to be suitable for providing further insight into the LIPSS process together with fine control on the formed surface structures. Modifications occurring by LIPSS on surfaces of WBS and dielectrics display high potentialities for their cross-cutting technological features and wide applications in which the main surface and electronic properties can be engineered. By these assessments, the employment of such nanostructured materials in innovative devices could be envisaged.
2022
Istituto di Struttura della Materia - ISM - Sede Roma Tor Vergata
LIPSS
Wide bandgap semiconductors
Dielectrics
Surface nanostructuring
LSFL
HSFL
SSPs
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/448279
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact