The vertebrate G protein-coupled receptor 37 and G protein-coupled receptor 37-like 1 (GPR37 and GPR37L1) proteins have amino acid sequence homology to endothelin and bombesin-specific receptors. The prosaposin glycoprotein, its derived peptides, and analogues have been reported to interact with and activate both putative receptors. The GPR37 and GPR37L1 genes are highly expressed in human and rodent brains. The human GPR37 protein is a substrate of parkin, and its insoluble form accumulates in brain samples from patients of inherited juvenile Parkinson's disease. Several Gpr37 and Gpr37l1 mouse mutant strains have been produced and applied to extensive in vivo and ex vivo analyses of respective receptor functions and involvement in brain and other organ pathologies. The genotypic and phenotypic characteristics of the different mouse strains so far published are reported and discussed, and their current and proposed applications to human disease modeling are highlighted.

Mouse Mutants of Gpr37 and Gpr37l1 Receptor Genes: Disease Modeling Applications

Marzia Massimi;Chiara Di Pietro;Gina La Sala;Rafaele Matteoni
2022

Abstract

The vertebrate G protein-coupled receptor 37 and G protein-coupled receptor 37-like 1 (GPR37 and GPR37L1) proteins have amino acid sequence homology to endothelin and bombesin-specific receptors. The prosaposin glycoprotein, its derived peptides, and analogues have been reported to interact with and activate both putative receptors. The GPR37 and GPR37L1 genes are highly expressed in human and rodent brains. The human GPR37 protein is a substrate of parkin, and its insoluble form accumulates in brain samples from patients of inherited juvenile Parkinson's disease. Several Gpr37 and Gpr37l1 mouse mutant strains have been produced and applied to extensive in vivo and ex vivo analyses of respective receptor functions and involvement in brain and other organ pathologies. The genotypic and phenotypic characteristics of the different mouse strains so far published are reported and discussed, and their current and proposed applications to human disease modeling are highlighted.
2022
Istituto di Biochimica e Biologia Cellulare - IBBC
mouse mutant
disease model
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/448819
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact