The real assets, procedures, systems,and subsystems of a city can be virtually represented throughan urban digital twin(DT),which integrates heterogeneous data to learn and evolve with the physical city,offering support to monitor the current status and predict possible future scenarios.A DT of a city can be organized into layers, which represent specific facets of the city and cooperate to address specifici ssues.In this work,we present an application scenario in which a geometric layer,representing the 3D morphology of the urbane nvironment, cooperates with an energy consumption layer,providing knowledge of the peculiarities of thebuilding urban area and in particular of the built fabric,to assess their impact in terms of energy efficiency.The analysis of the urban geometries provides quantitative measuresas useful input,for instance,to define heat leakage.

3D FEATURE RECOGNITION FOR THE ASSESSMENT OF BUILDINGS' ENERGY EFFICIENCY

Daniela Cabiddu;Michela Mortara;Chiara Romanengo;Andreas Scalas;Alice Bellazzi;Lorenzo Belussi;Ludovico Danza;Matteo Ghellere
2023

Abstract

The real assets, procedures, systems,and subsystems of a city can be virtually represented throughan urban digital twin(DT),which integrates heterogeneous data to learn and evolve with the physical city,offering support to monitor the current status and predict possible future scenarios.A DT of a city can be organized into layers, which represent specific facets of the city and cooperate to address specifici ssues.In this work,we present an application scenario in which a geometric layer,representing the 3D morphology of the urbane nvironment, cooperates with an energy consumption layer,providing knowledge of the peculiarities of thebuilding urban area and in particular of the built fabric,to assess their impact in terms of energy efficiency.The analysis of the urban geometries provides quantitative measuresas useful input,for instance,to define heat leakage.
2023
Istituto di Matematica Applicata e Tecnologie Informatiche - IMATI -
978-88-7617-056-0
urban intelligence
geometric layer
semantic enrichment
energy efficiency
urban mapping
File in questo prodotto:
File Dimensione Formato  
prod_492280-doc_205399.pdf

solo utenti autorizzati

Descrizione: BUILD-IT 2023 WORKSHOP Book of Abstracts
Tipologia: Versione Editoriale (PDF)
Dimensione 452.6 kB
Formato Adobe PDF
452.6 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
prod_492280-doc_205400.pdf

solo utenti autorizzati

Descrizione: 3D FEATURE RECOGNITION FOR THE ASSESSMENT OF BUILDINGS' ENERGY EFFICIENCY
Tipologia: Versione Editoriale (PDF)
Dimensione 997.64 kB
Formato Adobe PDF
997.64 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/450099
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact