This study addresses a challenging problem of predicting mean annual precipitation across arid and semi-arid areas in northern Algeria, utilizing deterministic, geostatistical (GS), and machine learning (ML) models. Through the analysis of data spanning nearly five decades and encompassing 150 monitoring stations, the result of Random Forest showed the highest training performance, with R square value (of 0.9524) and the Root Mean Square Error (of 24.98). Elevation emerges as a critical factor, enhancing prediction accuracy in mountainous and complex terrains when used as an auxiliary variable. Cluster analysis further refines our understanding of station distribution and precipitation characteristics, identifying four distinct clusters, each exhibiting unique precipitation patterns and elevation zones. This study helps for a better understanding of precipitation prediction, encouraging the integration of additional variables and the exploration of climate change impacts, thereby contributing to informed environmental management and adaptation strategies across diverse climatic and terrain scenarios.

Application of multiple spatial interpolation approaches to annual rainfall data in the Wadi Cheliff basin (north Algeria)

Gaetano Pellicone;Tommaso Caloiero
2024

Abstract

This study addresses a challenging problem of predicting mean annual precipitation across arid and semi-arid areas in northern Algeria, utilizing deterministic, geostatistical (GS), and machine learning (ML) models. Through the analysis of data spanning nearly five decades and encompassing 150 monitoring stations, the result of Random Forest showed the highest training performance, with R square value (of 0.9524) and the Root Mean Square Error (of 24.98). Elevation emerges as a critical factor, enhancing prediction accuracy in mountainous and complex terrains when used as an auxiliary variable. Cluster analysis further refines our understanding of station distribution and precipitation characteristics, identifying four distinct clusters, each exhibiting unique precipitation patterns and elevation zones. This study helps for a better understanding of precipitation prediction, encouraging the integration of additional variables and the exploration of climate change impacts, thereby contributing to informed environmental management and adaptation strategies across diverse climatic and terrain scenarios.
2024
Istituto per i Sistemi Agricoli e Forestali del Mediterraneo - ISAFOM
Algeria
Deterministic techniques
Geostatistical analysis
Machine learning
Rainfall
Spatial interpolation
File in questo prodotto:
File Dimensione Formato  
1-s2.0-S2090447923004677-main.pdf

accesso aperto

Licenza: Creative commons
Dimensione 2.21 MB
Formato Adobe PDF
2.21 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/450964
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? ND
social impact