We study the consistency and the oracle properties of the adaptive Lasso estimator for the coefficients of a linear AR(p) time series with a strictly stationary white noise (not necessarily described by i.i.d. r.v.'s). We apply the results to INAR(p) time series and to the non-parametric inference of the fertility function of a Hawkes point process. We present some numerical simulations to emphasize the advantages of the proposed procedure with respect to more classical ones and finally we apply it to a set of epidemiological data
The adaptive Lasso estimator of AR(p) time series with applications to INAR(p) and Hawkes processes
De Canditiis Daniela;Torrisi Giovanni Luca
2022
Abstract
We study the consistency and the oracle properties of the adaptive Lasso estimator for the coefficients of a linear AR(p) time series with a strictly stationary white noise (not necessarily described by i.i.d. r.v.'s). We apply the results to INAR(p) time series and to the non-parametric inference of the fertility function of a Hawkes point process. We present some numerical simulations to emphasize the advantages of the proposed procedure with respect to more classical ones and finally we apply it to a set of epidemiological dataFile in questo prodotto:
Non ci sono file associati a questo prodotto.
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.