The Dirichlet-Ferguson measure is a cornerstone in nonparametric Bayesian statistics and the study of distributional properties of expectations with respect to such measure is an important line of research. In this paper we provide explicit upper bounds for the d2, the d3 and the convex distance between vectors whose components are means of the Dirichlet-Ferguson measure and a Gaussian random vector.

Quantitative Multidimensional Central Limit Theorems for Means of the Dirichlet-Ferguson Measure

Giovanni Luca Torrisi
2023

Abstract

The Dirichlet-Ferguson measure is a cornerstone in nonparametric Bayesian statistics and the study of distributional properties of expectations with respect to such measure is an important line of research. In this paper we provide explicit upper bounds for the d2, the d3 and the convex distance between vectors whose components are means of the Dirichlet-Ferguson measure and a Gaussian random vector.
2023
Istituto Applicazioni del Calcolo ''Mauro Picone''
random measures
File in questo prodotto:
File Dimensione Formato  
ALEA2023.pdf

accesso aperto

Licenza: Dominio pubblico
Dimensione 639.54 kB
Formato Adobe PDF
639.54 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/451413
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
social impact