Hybrid electrochromic (EC) devices present an interesting configuration in which the advantage of both solid-state and liquid-based devices can be combined in order to optimize the device performances. In this configuration, a solid-state EC material is combined with a redox couple dissolved in the electrolyte. The redox electrolyte offers an unlimited charge capacity, thus allowing to fully exploit the electrochromic properties of the EC material. Here, we present a thiolate/disulphide (T/T) redox couple as a new redox shuttle for EC devices. In order to transfer the advantages of the redox couple to a solid state device, it was combined with a fully transparent thermally curable vinyl-acetate polymer. The obtained EC device was compared with that based on I/I showing higher transparency in the visible region of the solar spectrum and higher coloration efficiency. Most interestingly, the device based on T/T shows a slower self-bleaching process and it only loses 30% of its coloration after 1 h at open circuit. Such characteristic represents a great advantage for smart windows applications since it is not necessary to apply potential to maintain the device coloration, thus allowing a great energy saving.
Hybrid electrochromic device with transparent electrolyte
Giannuzzi, Roberto;Prontera, Carmela Tania;Capodilupo, Agostina Lina;Pugliese, Marco;Mariano, Fabrizio;Maggiore, Antonio;Gigli, Giuseppe;Maiorano, Vincenzo
2023
Abstract
Hybrid electrochromic (EC) devices present an interesting configuration in which the advantage of both solid-state and liquid-based devices can be combined in order to optimize the device performances. In this configuration, a solid-state EC material is combined with a redox couple dissolved in the electrolyte. The redox electrolyte offers an unlimited charge capacity, thus allowing to fully exploit the electrochromic properties of the EC material. Here, we present a thiolate/disulphide (T/T) redox couple as a new redox shuttle for EC devices. In order to transfer the advantages of the redox couple to a solid state device, it was combined with a fully transparent thermally curable vinyl-acetate polymer. The obtained EC device was compared with that based on I/I showing higher transparency in the visible region of the solar spectrum and higher coloration efficiency. Most interestingly, the device based on T/T shows a slower self-bleaching process and it only loses 30% of its coloration after 1 h at open circuit. Such characteristic represents a great advantage for smart windows applications since it is not necessary to apply potential to maintain the device coloration, thus allowing a great energy saving.File | Dimensione | Formato | |
---|---|---|---|
Hybrid electrochromic device with transparent electrolyte.pdf
non disponibili
Tipologia:
Versione Editoriale (PDF)
Licenza:
NON PUBBLICO - Accesso privato/ristretto
Dimensione
3.96 MB
Formato
Adobe PDF
|
3.96 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.