Image resizing (IR) has a crucial role in remote sensing (RS), since an image's level of detail depends on the spatial resolution of the acquisition sensor; its design limitations; and other factors such as (a) the weather conditions, (b) the lighting, and (c) the distance between the satellite platform and the ground targets. In this paper, we assessed some recent IR methods for RS applications (RSAs) by proposing a useful open framework to study, develop, and compare them. The proposed framework could manage any kind of color image and was instantiated as a Matlab package made freely available on Github. Here, we employed it to perform extensive experiments across multiple public RS image datasets and two new datasets included in the framework to evaluate, qualitatively and quantitatively, the performance of each method in terms of image quality and statistical measures.
An Open Image Resizing Framework for Remote Sensing Applications and beyond
Ramella G;Themistoclakis W
2023
Abstract
Image resizing (IR) has a crucial role in remote sensing (RS), since an image's level of detail depends on the spatial resolution of the acquisition sensor; its design limitations; and other factors such as (a) the weather conditions, (b) the lighting, and (c) the distance between the satellite platform and the ground targets. In this paper, we assessed some recent IR methods for RS applications (RSAs) by proposing a useful open framework to study, develop, and compare them. The proposed framework could manage any kind of color image and was instantiated as a Matlab package made freely available on Github. Here, we employed it to perform extensive experiments across multiple public RS image datasets and two new datasets included in the framework to evaluate, qualitatively and quantitatively, the performance of each method in terms of image quality and statistical measures.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.