Maternal infections during pregnancy may increase the risk of psychiatric disorders in offspring. We recently demonstrated that activation of peroxisome proliferator-activate receptor-? (PPAR?), with the clinically available agonist fenofibrate (FEN), attenuates the neurodevelopmental disturbances induced by maternal immune activation (MIA) in rat offspring. We hypothesized that fenofibrate might reduce MIA-induced cytokine imbalance using a MIA model based on the viral mimetic polyriboinosinic-polyribocytidilic acid [poly (I:C)]. By using the Bio-Plex Multiplex-Immunoassay-System, we measured cytokine/chemokine/growth factor levels in maternal serum and in the fetal brain of rats treated with fenofibrate, at 6 and 24 h after poly (I:C). We found that MIA induced time-dependent changes in the levels of several cytokines/chemokines/colony-stimulating factors (CSFs). Specifically, the maternal serum of the poly (I:C)/control (CTRL) group showed increased levels of (i) proinflammatory chemokine macrophage inflammatory protein 1-alpha (MIP-1?), (ii) tumor necrosis factor-alpha (TNF-?), the monocyte chemoattractant protein-1 (MCP-1), the macrophage (M-CSF) and granulocyte-macrophage colony-stimulating factor (GM-CSF). Conversely, in the fetal brain of the poly (I:C)/CTRL group, interleukin 12p70 and MIP-1? levels were lower than in vehicle (veh)/CTRL group. Notably, MIP-1?, TNF-?, keratinocyte derived chemokine (GRO/KC), GM-CSF, and M-CSF levels were lower in the poly (I:C)/FEN than in poly (I:C)/CTRL rats, suggesting the protective role of the PPAR? agonist. PPAR? might represent a therapeutic target to attenuate MIA-induced inflammation.

The PPARalpha agonist fenofibrate reduces the cytokine imbalance in a maternal immune activation model of schizophrenia

Serra V;Orrù V;
2023

Abstract

Maternal infections during pregnancy may increase the risk of psychiatric disorders in offspring. We recently demonstrated that activation of peroxisome proliferator-activate receptor-? (PPAR?), with the clinically available agonist fenofibrate (FEN), attenuates the neurodevelopmental disturbances induced by maternal immune activation (MIA) in rat offspring. We hypothesized that fenofibrate might reduce MIA-induced cytokine imbalance using a MIA model based on the viral mimetic polyriboinosinic-polyribocytidilic acid [poly (I:C)]. By using the Bio-Plex Multiplex-Immunoassay-System, we measured cytokine/chemokine/growth factor levels in maternal serum and in the fetal brain of rats treated with fenofibrate, at 6 and 24 h after poly (I:C). We found that MIA induced time-dependent changes in the levels of several cytokines/chemokines/colony-stimulating factors (CSFs). Specifically, the maternal serum of the poly (I:C)/control (CTRL) group showed increased levels of (i) proinflammatory chemokine macrophage inflammatory protein 1-alpha (MIP-1?), (ii) tumor necrosis factor-alpha (TNF-?), the monocyte chemoattractant protein-1 (MCP-1), the macrophage (M-CSF) and granulocyte-macrophage colony-stimulating factor (GM-CSF). Conversely, in the fetal brain of the poly (I:C)/CTRL group, interleukin 12p70 and MIP-1? levels were lower than in vehicle (veh)/CTRL group. Notably, MIP-1?, TNF-?, keratinocyte derived chemokine (GRO/KC), GM-CSF, and M-CSF levels were lower in the poly (I:C)/FEN than in poly (I:C)/CTRL rats, suggesting the protective role of the PPAR? agonist. PPAR? might represent a therapeutic target to attenuate MIA-induced inflammation.
2023
MIA
Cytokines
Colony-stimulating factors
Poly (I:C)
Neurodevelopmental disorders
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/454069
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact