Recent work has revealed the central role played by the Kirkwood-Dirac quasiprobability (KDQ) as a tool to properly account for non-classical features in the context of condensed matter physics (scrambling, dynamical phase transitions) metrology (standard and post-selected), thermodynamics (power output and fluctuation theorems), foundations (contextuality, anomalous weak values) and more. Given the growing relevance of the KDQ across the quantum sciences, our aim is two-fold: First, we highlight the role played by quasiprobabilities in characterizing the statistics of quantum observables and processes in the presence of measurement incompatibility. In this way, we show how the KDQ naturally underpins and unifies quantum correlators, quantum currents, Loschmidt echoes, and weak values. Second, we provide novel theoretical and experimental perspectives by discussing a wide variety of schemes to access the KDQ and its non-classicality features.

Kirkwood-Dirac quasiprobability approach to the statistics of incompatible observables

Nicole Fabbri;Stefano Gherardini
2023

Abstract

Recent work has revealed the central role played by the Kirkwood-Dirac quasiprobability (KDQ) as a tool to properly account for non-classical features in the context of condensed matter physics (scrambling, dynamical phase transitions) metrology (standard and post-selected), thermodynamics (power output and fluctuation theorems), foundations (contextuality, anomalous weak values) and more. Given the growing relevance of the KDQ across the quantum sciences, our aim is two-fold: First, we highlight the role played by quasiprobabilities in characterizing the statistics of quantum observables and processes in the presence of measurement incompatibility. In this way, we show how the KDQ naturally underpins and unifies quantum correlators, quantum currents, Loschmidt echoes, and weak values. Second, we provide novel theoretical and experimental perspectives by discussing a wide variety of schemes to access the KDQ and its non-classicality features.
2023
Istituto Nazionale di Ottica - INO
Kirkwood-Dirac quasiprobabilities
Incompatible quantum observables
Non-classicality
Measurement incompatibility
Quantum correlation functions
Loschmidt echo
Reconstruction methods
File in questo prodotto:
File Dimensione Formato  
prod_490899-doc_204605.pdf

accesso aperto

Descrizione: Kirkwood-Dirac quasiprobability approach to the statistics of incompatible observables
Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 3.81 MB
Formato Adobe PDF
3.81 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/454317
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 24
  • ???jsp.display-item.citation.isi??? ND
social impact