We investigate the ground state of a system of interacting particles in small nonlinear lattices with M >= 3 sites, using as a prototypical example the discrete nonlinear Schrodinger equation that has been recently used extensively in the contexts of nonlinear optics of waveguide arrays and Bose-Einstein condensates in optical lattices. We find that, in the presence of attractive interactions, the dynamical scenario relevant to the ground-state and the lowest-energy modes of such few-site nonlinear lattices reveals a variety of nontrivial features that are absent in the large/infinite lattice limits: the single-pulse solution and the uniform solution are found to coexist in a finite range of the lattice intersite coupling where, depending on the latter, one of them represents the ground state; in addition, the single-pulse mode does not even exist beyond a critical parametric threshold. Finally, the onset of the ground-state (modulational) instability appears to be intimately connected with a nonstandard ('double transcritical') type of bifurcation that, to the best of our knowledge, has not been reported previously in other physical systems.

Ground-state properties of small-size nonlinear dynamical lattices

Buonsante P;Vezzani A
2007

Abstract

We investigate the ground state of a system of interacting particles in small nonlinear lattices with M >= 3 sites, using as a prototypical example the discrete nonlinear Schrodinger equation that has been recently used extensively in the contexts of nonlinear optics of waveguide arrays and Bose-Einstein condensates in optical lattices. We find that, in the presence of attractive interactions, the dynamical scenario relevant to the ground-state and the lowest-energy modes of such few-site nonlinear lattices reveals a variety of nontrivial features that are absent in the large/infinite lattice limits: the single-pulse solution and the uniform solution are found to coexist in a finite range of the lattice intersite coupling where, depending on the latter, one of them represents the ground state; in addition, the single-pulse mode does not even exist beyond a critical parametric threshold. Finally, the onset of the ground-state (modulational) instability appears to be intimately connected with a nonstandard ('double transcritical') type of bifurcation that, to the best of our knowledge, has not been reported previously in other physical systems.
2007
INFM
BOSE-EINSTEIN CONDENSATE
SELF-TRAPPING EQUATION
MEAN-FIELD THEORY
OPTICAL LATTICES
PHOTONIC LATTICES
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/454511
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 10
  • ???jsp.display-item.citation.isi??? ND
social impact