Background: Leaf area index (LAI) is a key indicator for the assessment of the canopy's processes such as net primary production and evapotranspiration. For this reason, the LAI is often used as a key input parameter in ecosystem services' modeling, which is emerging as a critical tool for steering upcoming urban reforestation strategies. However, LAI field measures are extremely time-consuming and require remarkable economic and human resources. In this context, spectral indices computed using high-resolution multispectral satellite imagery like Sentinel-2 and Landsat 8, may represent a feasible and economic solution for estimating the LAI at the city scale. Nonetheless, as far as we know, only a few studies have assessed the potential of Sentinel-2 and Landsat 8 data doing so in Mediterranean forest ecosystems. To fill such a gap, we assessed the performance of 10 spectral indices derived from Sentinel-2 and Landsat 8 data in estimating the LAI, using field measurements collected with the LI-COR LAI 2200c as a reference. We hypothesized that Sentinel-2 data, owing to their finer spatial and spectral resolution, perform better in estimating vegetation's structural parameters compared to Landsat 8. Results: We found that Landsat 8-derived models have, on average, a slightly better performance, with the best model (the one based on NDVI) showing an R of 0.55 and NRMSE of 14.74%, compared to R of 0.52 and NRMSE of 15.15% showed by the best Sentinel-2 model, which is based on the NBR. All models were affected by spectrum saturation for high LAI values (e.g., above 5). Conclusion: In Mediterranean ecosystems, Sentinel-2 and Landsat 8 data produce moderately accurate LAI estimates during the peak of the growing season. Therefore, the uncertainty introduced using satellite-derived LAI in ecosystem services' assessments should be systematically accounted for.
Comparing leaf area index estimates in a Mediterranean forest using field measurements, Landsat 8, and Sentinel-2 data
Sebastiani, Alessandro;
2023
Abstract
Background: Leaf area index (LAI) is a key indicator for the assessment of the canopy's processes such as net primary production and evapotranspiration. For this reason, the LAI is often used as a key input parameter in ecosystem services' modeling, which is emerging as a critical tool for steering upcoming urban reforestation strategies. However, LAI field measures are extremely time-consuming and require remarkable economic and human resources. In this context, spectral indices computed using high-resolution multispectral satellite imagery like Sentinel-2 and Landsat 8, may represent a feasible and economic solution for estimating the LAI at the city scale. Nonetheless, as far as we know, only a few studies have assessed the potential of Sentinel-2 and Landsat 8 data doing so in Mediterranean forest ecosystems. To fill such a gap, we assessed the performance of 10 spectral indices derived from Sentinel-2 and Landsat 8 data in estimating the LAI, using field measurements collected with the LI-COR LAI 2200c as a reference. We hypothesized that Sentinel-2 data, owing to their finer spatial and spectral resolution, perform better in estimating vegetation's structural parameters compared to Landsat 8. Results: We found that Landsat 8-derived models have, on average, a slightly better performance, with the best model (the one based on NDVI) showing an R of 0.55 and NRMSE of 14.74%, compared to R of 0.52 and NRMSE of 15.15% showed by the best Sentinel-2 model, which is based on the NBR. All models were affected by spectrum saturation for high LAI values (e.g., above 5). Conclusion: In Mediterranean ecosystems, Sentinel-2 and Landsat 8 data produce moderately accurate LAI estimates during the peak of the growing season. Therefore, the uncertainty introduced using satellite-derived LAI in ecosystem services' assessments should be systematically accounted for.| File | Dimensione | Formato | |
|---|---|---|---|
|
comparing leaf area.pdf
accesso aperto
Tipologia:
Versione Editoriale (PDF)
Licenza:
Creative commons
Dimensione
3.74 MB
Formato
Adobe PDF
|
3.74 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.


