This study investigates the distribution of vegetation and its modern pollen representation along an elevation gradient in the Italian Alps and explores the relationships with terrain and climate variables. Moss polsters were collected at 25 sites between ca. 300 and 1400 m asl from open areas, deciduous, and conifer forests. At each site vegetation was surveyed at 1.8 and 10 m radius according to the Braun-Blanquet method. Climatic data, bioclimatic indices, and terrain parameters were obtained for each sampling site. Three distinct pollen associations reflect the characteristic vegetation altitudinal belts present in the study area. Uphill dispersal, the regional load and the presence of high producers influence the abundance of pollen and the representation of taxa along the gradient. CCA ordination technique reveals the predictive power of environmental variables on modern pollen and vegetation datasets. The most relevant factors controlling vegetation distribution are identified in elevation, insolation, Pspring, Tsummer, the Ellenberg quotient, and Summer Water Balance (SWB). Elevation, insolation, summer P and T, the Ellenberg quotient, and the Gams' hygric continentality index (GAMS) explain more variance within the pollen dataset. A qualitative comparison among pollen and the corresponding parent plant occurrence qualifies Abies alba, Fagus sylvatica, Poaceae and Cyclamen pollen as suitable indicators taxa of the local vegetation in the study area. Several high producers with very effective, longdistance anemophilous dispersal (Pinus, Ostrya, Alnus, and Juglans) or mixed pollination mechanisms (anemophilous and insect-pollination: Fraxinus ornus, and Castanea) show no or little association with their parent plants.
Plant distribution and modern pollen deposition across an elevation eco-gradient: the lesson learnt from a case-study in the Italian Alps.
FURLANETTO G;BERTULETTI P;BRUNETTI M;PINI R
2023
Abstract
This study investigates the distribution of vegetation and its modern pollen representation along an elevation gradient in the Italian Alps and explores the relationships with terrain and climate variables. Moss polsters were collected at 25 sites between ca. 300 and 1400 m asl from open areas, deciduous, and conifer forests. At each site vegetation was surveyed at 1.8 and 10 m radius according to the Braun-Blanquet method. Climatic data, bioclimatic indices, and terrain parameters were obtained for each sampling site. Three distinct pollen associations reflect the characteristic vegetation altitudinal belts present in the study area. Uphill dispersal, the regional load and the presence of high producers influence the abundance of pollen and the representation of taxa along the gradient. CCA ordination technique reveals the predictive power of environmental variables on modern pollen and vegetation datasets. The most relevant factors controlling vegetation distribution are identified in elevation, insolation, Pspring, Tsummer, the Ellenberg quotient, and Summer Water Balance (SWB). Elevation, insolation, summer P and T, the Ellenberg quotient, and the Gams' hygric continentality index (GAMS) explain more variance within the pollen dataset. A qualitative comparison among pollen and the corresponding parent plant occurrence qualifies Abies alba, Fagus sylvatica, Poaceae and Cyclamen pollen as suitable indicators taxa of the local vegetation in the study area. Several high producers with very effective, longdistance anemophilous dispersal (Pinus, Ostrya, Alnus, and Juglans) or mixed pollination mechanisms (anemophilous and insect-pollination: Fraxinus ornus, and Castanea) show no or little association with their parent plants.File | Dimensione | Formato | |
---|---|---|---|
prod_478164-doc_195859.pdf
solo utenti autorizzati
Descrizione: Fontana et al_elevation ecogradient_The Holocene 2023
Tipologia:
Versione Editoriale (PDF)
Licenza:
NON PUBBLICO - Accesso privato/ristretto
Dimensione
7.77 MB
Formato
Adobe PDF
|
7.77 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.