Photocyclization of carbonyl compounds (known as the Norrish-Yang reaction) to yield cyclobutanols is, in general, accompanied by fragmentation reactions. The latter are predominant in the case of aldehydes so that secondary cyclobutanols are not considered accessible via the straightforward Norrish-Yang reaction. A noteworthy exception has been reported in our laboratory, where cyclobutanols bearing a secondary alcohol function were observed upon UV light irradiation of 2(hydroxyimino)aldehydes (HIAs). This reaction is here investigated in detail by combining synthesis, spectroscopic data, molecular dynamics, and DFT calculations. The synthetic methodology is generally applicable to a series of HIAs, affording the corresponding cyclobutanol oximes (CBOs) chemoselectively (i.e., without sizable fragmentation side-reactions), diastereoselectively (up to >99:1), and in good to excellent yields (up to 95%). CBO oxime ether derivatives can be purified and diastereomers isolated by standard column chromatography. The mechanistic and stereochemical picture of this photocyclization reaction, as well as of the postcyclization E/Z isomerization of the oxime double bond is completed.
Unusually Chemoselective Photocyclization of 2-(Hydroxyimino)aldehydes to Cyclobutanol Oximes: Synthetic, Stereochemical, and Mechanistic Aspects br
D'Acunzo F;Gentili P
2022
Abstract
Photocyclization of carbonyl compounds (known as the Norrish-Yang reaction) to yield cyclobutanols is, in general, accompanied by fragmentation reactions. The latter are predominant in the case of aldehydes so that secondary cyclobutanols are not considered accessible via the straightforward Norrish-Yang reaction. A noteworthy exception has been reported in our laboratory, where cyclobutanols bearing a secondary alcohol function were observed upon UV light irradiation of 2(hydroxyimino)aldehydes (HIAs). This reaction is here investigated in detail by combining synthesis, spectroscopic data, molecular dynamics, and DFT calculations. The synthetic methodology is generally applicable to a series of HIAs, affording the corresponding cyclobutanol oximes (CBOs) chemoselectively (i.e., without sizable fragmentation side-reactions), diastereoselectively (up to >99:1), and in good to excellent yields (up to 95%). CBO oxime ether derivatives can be purified and diastereomers isolated by standard column chromatography. The mechanistic and stereochemical picture of this photocyclization reaction, as well as of the postcyclization E/Z isomerization of the oxime double bond is completed.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.