The amelioration of biofouling in industrial processing equipment is critical for performance and reliability. While conventional biocides are effective in biofouling control, they are potentially hazardous to the environment and in some cases corrosive to materials. Enzymatic approaches have been shown to be effective and can overcome the disadvantages of traditional biocides, however they are typically uneconomic for routine biofouling control. The aim of this study was to design a robust and reusable enzyme-functionalized nano-bead system having biofilm dispersion properties. This work describes the biochemical covalent functionalization of silica-based nanobeads (hereafter referred to as Si-NanoB) with Proteinase K (PK). Results showed that PK-functionalized Si-NanoB are effective in dispersing both protein-based model biofilms and structurally altering Pseudomonas fluorescens biofilms, with significant decreases in surface coverage and thickness of 30.1% and 38.85%, respectively, while increasing surface roughness by 19 % following 24h treatments on bacterial biofilms. This study shows that enzyme-functionalized nanobeads may potentially be an environmentally friendly and cost effective alternative to pure enzyme and chemical treatments. Biotechnol. Bioeng. 2016;113: 501-512. (c) 2015 The Authors. Biotechnology and Bioengineering Published by Wiley Periodicals, Inc.

Antifouling activity of enzyme-functionalized silica nanobeads

Amadio Jessica;
2015

Abstract

The amelioration of biofouling in industrial processing equipment is critical for performance and reliability. While conventional biocides are effective in biofouling control, they are potentially hazardous to the environment and in some cases corrosive to materials. Enzymatic approaches have been shown to be effective and can overcome the disadvantages of traditional biocides, however they are typically uneconomic for routine biofouling control. The aim of this study was to design a robust and reusable enzyme-functionalized nano-bead system having biofilm dispersion properties. This work describes the biochemical covalent functionalization of silica-based nanobeads (hereafter referred to as Si-NanoB) with Proteinase K (PK). Results showed that PK-functionalized Si-NanoB are effective in dispersing both protein-based model biofilms and structurally altering Pseudomonas fluorescens biofilms, with significant decreases in surface coverage and thickness of 30.1% and 38.85%, respectively, while increasing surface roughness by 19 % following 24h treatments on bacterial biofilms. This study shows that enzyme-functionalized nanobeads may potentially be an environmentally friendly and cost effective alternative to pure enzyme and chemical treatments. Biotechnol. Bioeng. 2016;113: 501-512. (c) 2015 The Authors. Biotechnology and Bioengineering Published by Wiley Periodicals, Inc.
2015
biofilm
enzyme
nanoparticles
antifouling
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/458023
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 19
social impact