The use of seawater in horticulture is underestimated. Although pure seawater is harmful to most living plants, diluted seawater could represent a promising integration to meet the crop's nutrient and water requirements. In the current trial, we compared the effects of moderate and high concentrations of seawater and a comparable NaCl solution on a salt-tolerant (Tetragonia tetragonioides) and a salt-sensitive (Lactuca sativa) crop grown in hydroponics. We tested the hypothesis that, due to its mineral composition, diluted seawater would result in a less stressful growing medium than NaCl. We observed that diluted seawater resulted in a less detrimental growing medium compared to an EC-comparable NaCl solution, with remarkable differences between the salt-tolerant and the salt-sensitive species. While the growth rates in Tetragonia did not vary between the two types of stress, diluted seawater led to a higher FW and DW biomass yield in the salt-sensitive lettuce compared to the NaCl treatment. Moreover, NaCl reduced the water consumption and water productivity in Tetragonia. In lettuce, NaCl-treated plants demonstrated lower water use efficiency and water productivity compared to the EC-comparable seawater treatment. Physiological parameters and the concentration of mineral elements, phenolics and proline also demonstrated that, due to different mineral composition, seawater is a less stressful growing medium compared to a NaCl solution at comparable EC.

The Response of Halophyte Tetragonia tetragonioides (Pallas) Kuntz. and Glycophyte Lactuca sativa L. Crops to Diluted Seawater and NaCl Solutions: A Comparison between Two Salinity Stress Types

Atzori Giulia
2021

Abstract

The use of seawater in horticulture is underestimated. Although pure seawater is harmful to most living plants, diluted seawater could represent a promising integration to meet the crop's nutrient and water requirements. In the current trial, we compared the effects of moderate and high concentrations of seawater and a comparable NaCl solution on a salt-tolerant (Tetragonia tetragonioides) and a salt-sensitive (Lactuca sativa) crop grown in hydroponics. We tested the hypothesis that, due to its mineral composition, diluted seawater would result in a less stressful growing medium than NaCl. We observed that diluted seawater resulted in a less detrimental growing medium compared to an EC-comparable NaCl solution, with remarkable differences between the salt-tolerant and the salt-sensitive species. While the growth rates in Tetragonia did not vary between the two types of stress, diluted seawater led to a higher FW and DW biomass yield in the salt-sensitive lettuce compared to the NaCl treatment. Moreover, NaCl reduced the water consumption and water productivity in Tetragonia. In lettuce, NaCl-treated plants demonstrated lower water use efficiency and water productivity compared to the EC-comparable seawater treatment. Physiological parameters and the concentration of mineral elements, phenolics and proline also demonstrated that, due to different mineral composition, seawater is a less stressful growing medium compared to a NaCl solution at comparable EC.
2021
Istituto per la Protezione Sostenibile delle Piante - IPSP
Istituto per la Protezione Sostenibile delle Piante - IPSP - Sede Secondaria Sesto Fiorentino (FI)
saline agriculture
seawater irrigation
New Zealand spinach
lettuce
salt stress
seawater salt stress
NaCl salt stress
hydroponics
salt tolerance
File in questo prodotto:
File Dimensione Formato  
prod_487404-doc_202503.pdf

accesso aperto

Descrizione: The Response of Halophyte Tetragonia tetragonioides (Pallas) Kuntz. and Glycophyte Lactuca sativa L. Crops to Diluted Seawater and NaCl Solutions
Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 2.07 MB
Formato Adobe PDF
2.07 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/458105
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 10
  • ???jsp.display-item.citation.isi??? 10
social impact