Every soccer game influences each player's performance differently. Many studies have tried to explain the influence of different parameters on the game; however, none went deeper into the core and examined it minute-by-minute. The goal of this study is to use data derived from GPS wearable devices to present a new framework for performance analysis. A player's energy expenditure is analyzed using data analytics and K-means clustering of low-, middle-, and high-intensity periods distributed in 1 min segments. Our framework exhibits a higher explanatory power compared to usual game metrics (e.g., high-speed running and sprinting), explaining 45.91% of the coefficient of variation vs. 21.32% for high-, 30.66% vs. 16.82% for middle-, and 24.41% vs. 19.12% for low-intensity periods. The proposed methods enable deeper game analysis, which can help strength and conditioning coaches and managers in gaining better insights into the players' responses to various game situations.

Extended energy-expenditure model in soccer: evaluating player performance in the context of the game

Pappalardo L;
2022

Abstract

Every soccer game influences each player's performance differently. Many studies have tried to explain the influence of different parameters on the game; however, none went deeper into the core and examined it minute-by-minute. The goal of this study is to use data derived from GPS wearable devices to present a new framework for performance analysis. A player's energy expenditure is analyzed using data analytics and K-means clustering of low-, middle-, and high-intensity periods distributed in 1 min segments. Our framework exhibits a higher explanatory power compared to usual game metrics (e.g., high-speed running and sprinting), explaining 45.91% of the coefficient of variation vs. 21.32% for high-, 30.66% vs. 16.82% for middle-, and 24.41% vs. 19.12% for low-intensity periods. The proposed methods enable deeper game analysis, which can help strength and conditioning coaches and managers in gaining better insights into the players' responses to various game situations.
2022
Istituto di Scienza e Tecnologie dell'Informazione "Alessandro Faedo" - ISTI
Game intensity
Clustering
Machine learning
Fatigue
Fitness tracking
File in questo prodotto:
File Dimensione Formato  
prod_477682-doc_195480.pdf

accesso aperto

Descrizione: Extended energy-expenditure model in soccer: evaluating player performance in the context of the game
Tipologia: Versione Editoriale (PDF)
Dimensione 1.24 MB
Formato Adobe PDF
1.24 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/458177
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact