We characterize metrologically useful multipartite entanglement by representing partitions with Young diagrams. We derive entanglement witnesses that are sensitive to the shape of Young diagrams and show that Dyson's rank acts as a resource for quantum metrology. Common quantifiers, such as the entanglement depth and k-separability are contained in this approach as the diagram's width and height. Our methods are experimentally accessible in a wide range of atomic systems, as we illustrate by analyzing published data on the quantum Fisher information and spin-squeezing coefficients.

Metrological Detection of Multipartite Entanglement from Young Diagrams

Smerzi A;
2021

Abstract

We characterize metrologically useful multipartite entanglement by representing partitions with Young diagrams. We derive entanglement witnesses that are sensitive to the shape of Young diagrams and show that Dyson's rank acts as a resource for quantum metrology. Common quantifiers, such as the entanglement depth and k-separability are contained in this approach as the diagram's width and height. Our methods are experimentally accessible in a wide range of atomic systems, as we illustrate by analyzing published data on the quantum Fisher information and spin-squeezing coefficients.
2021
Istituto Nazionale di Ottica - INO
metrology; quantum entanglement
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/458647
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 33
  • ???jsp.display-item.citation.isi??? ND
social impact