CONTEXT: The interaction of advanced glycation end products, including Nepsilon-(carboxymethyl)lysine-protein adducts (CML) and S100A12 protein, with their cellular receptor (RAGE) is implicated in the pathogenesis of diabetic vascular complications. RAGE has a circulating secretory receptor form, soluble RAGE (sRAGE), which, by neutralizing the action of advanced glycation end products, might exert a protective role against the development of cardiovascular disease. OBJECTIVE: The objective of the study was to investigate whether plasma sRAGE levels are associated with glycemic control, proinflammatory factors, or circulating ligands of RAGE such as plasma CML and S100A12 protein. STUDY DESIGN: We studied 160 subjects, 84 subjects with type 2 diabetes (aged 60 +/- 7 yr) and 76 nondiabetic controls (aged 45 +/- 10 yr). RESULTS: Plasma sRAGE was lower in diabetic patients than controls [141 (53-345) vs. 735 (519-1001) pg/ml, median (interquartile range), P 0.0001], whereas CML levels were higher in diabetic patients than controls [67.9 (46.0-84.7) vs. 43.4 (28.0-65.0) microg/ml, P 0.0001]. In stepwise regression analysis of the whole data set, hemoglobin A1c, insulin resistance (as homeostasis model assessment), and C-reactive protein were independently associated with plasma sRAGE, whereas age was not. In a subgroup of 26 diabetic and 24 nondiabetic subjects of similar age (54 +/- 3 yr), plasma S100A12 levels were higher in diabetic subjects [49 (39-126) vs. 28 (21-39) ng/ml]. Moreover, low sRAGE and high S100A12 were strongly associated with increased risk for cardiovascular disease (Framingham score). In this subgroup, the plasma S100A12 level was the only determinant of plasma sRAGE concentration. CONCLUSION: Plasma level of sRAGE is down-regulated in chronic hyperglycemia; among its ligands, S100A12 protein, but not CML, appears to be associated with this effect.
Circulating soluble receptor for advanced glycation end products is inversely associated with glycemic control and S100A12 protein
Basta G;Del Turco S;Buzzigoli E;Gastaldelli A
2006
Abstract
CONTEXT: The interaction of advanced glycation end products, including Nepsilon-(carboxymethyl)lysine-protein adducts (CML) and S100A12 protein, with their cellular receptor (RAGE) is implicated in the pathogenesis of diabetic vascular complications. RAGE has a circulating secretory receptor form, soluble RAGE (sRAGE), which, by neutralizing the action of advanced glycation end products, might exert a protective role against the development of cardiovascular disease. OBJECTIVE: The objective of the study was to investigate whether plasma sRAGE levels are associated with glycemic control, proinflammatory factors, or circulating ligands of RAGE such as plasma CML and S100A12 protein. STUDY DESIGN: We studied 160 subjects, 84 subjects with type 2 diabetes (aged 60 +/- 7 yr) and 76 nondiabetic controls (aged 45 +/- 10 yr). RESULTS: Plasma sRAGE was lower in diabetic patients than controls [141 (53-345) vs. 735 (519-1001) pg/ml, median (interquartile range), P 0.0001], whereas CML levels were higher in diabetic patients than controls [67.9 (46.0-84.7) vs. 43.4 (28.0-65.0) microg/ml, P 0.0001]. In stepwise regression analysis of the whole data set, hemoglobin A1c, insulin resistance (as homeostasis model assessment), and C-reactive protein were independently associated with plasma sRAGE, whereas age was not. In a subgroup of 26 diabetic and 24 nondiabetic subjects of similar age (54 +/- 3 yr), plasma S100A12 levels were higher in diabetic subjects [49 (39-126) vs. 28 (21-39) ng/ml]. Moreover, low sRAGE and high S100A12 were strongly associated with increased risk for cardiovascular disease (Framingham score). In this subgroup, the plasma S100A12 level was the only determinant of plasma sRAGE concentration. CONCLUSION: Plasma level of sRAGE is down-regulated in chronic hyperglycemia; among its ligands, S100A12 protein, but not CML, appears to be associated with this effect.File | Dimensione | Formato | |
---|---|---|---|
prod_23800-doc_5710.pdf
accesso aperto
Descrizione: circulating soluble receptor
Dimensione
225.16 kB
Formato
Adobe PDF
|
225.16 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.