In addition to its remarkable genome editing capability, the CRISPR-Cas system has proven to be very effective in many fields of application, including the biosensing of pathogenic infections, mutagenic defects, or early cancer diagnosis. Thanks to their many advantages in terms of simplicity, efficiency, and reduced time, several CRISPR-Cas systems have been described for the design of sensitive and selective analytical tools, paving the way for the development and further commercialization of next-generation diagnostics. However, CRISPR-Cas-based biosensors still need further research efforts to improve some drawbacks, such as the need for target amplification, low reproducibility, and lack of knowledge of exploited element robustness. This review aims to describe the latest trends in the design of CRISPR-Cas biosensing technologies to better highlight the insights of their advantages and to point out the limitations that still need to be overcome for their future market entry as medical diagnostics.

CRISPR-Cas assisted diagnostics: A broad application biosensing approach

Masi A;Antonacci A;Moccia M;Frisulli V;De Felice M;De Falco M;Scognamiglio V
2023

Abstract

In addition to its remarkable genome editing capability, the CRISPR-Cas system has proven to be very effective in many fields of application, including the biosensing of pathogenic infections, mutagenic defects, or early cancer diagnosis. Thanks to their many advantages in terms of simplicity, efficiency, and reduced time, several CRISPR-Cas systems have been described for the design of sensitive and selective analytical tools, paving the way for the development and further commercialization of next-generation diagnostics. However, CRISPR-Cas-based biosensors still need further research efforts to improve some drawbacks, such as the need for target amplification, low reproducibility, and lack of knowledge of exploited element robustness. This review aims to describe the latest trends in the design of CRISPR-Cas biosensing technologies to better highlight the insights of their advantages and to point out the limitations that still need to be overcome for their future market entry as medical diagnostics.
2023
Istituto di Cristallografia - IC
Istituto di Bioscienze e Biorisorse
CRISPR-Cas biosensing
Nucleic acid amplification
Infectious diseases
Cancer biomarkers
Point of care
File in questo prodotto:
File Dimensione Formato  
prod_480005-doc_197100.pdf

accesso aperto

Descrizione: CRISPR-Cas assisted diagnostics: A broad application biosensing approach
Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 2.28 MB
Formato Adobe PDF
2.28 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/459342
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 10
  • ???jsp.display-item.citation.isi??? ND
social impact