In this study, a model to predict LWP using via UAS equipped with a VIS-NIR multispectral camera and trained machine learning algorithm, is developed and tested. This research shows the potential for estimating LWP at a vineyard scale based on UAS information, represents a good and relatively cheap solution to assess plant status spatial distribution and therefore it could provide a direct way to achieve precise agricultural vineyard.

Effect of multi-level and multi-scale spectral data source on vineyard state assessment

Eugenia Monaco;Maurizio Buonanno;Rossella Albrizio;Pasquale Giorio;Arturo Erbaggio;Antonello Bonfante
2023

Abstract

In this study, a model to predict LWP using via UAS equipped with a VIS-NIR multispectral camera and trained machine learning algorithm, is developed and tested. This research shows the potential for estimating LWP at a vineyard scale based on UAS information, represents a good and relatively cheap solution to assess plant status spatial distribution and therefore it could provide a direct way to achieve precise agricultural vineyard.
2023
Istituto per i Sistemi Agricoli e Forestali del Mediterraneo - ISAFOM
Leaf water potential
vineyard
UAS
VIS-NIR multispectral camera
File in questo prodotto:
File Dimensione Formato  
prod_480121-doc_197141.pdf

solo utenti autorizzati

Descrizione: EGU23-16735
Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 288.53 kB
Formato Adobe PDF
288.53 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/459458
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact