The identification of optically thin cirrus is crucial for their accurate parameterization in climate and Earth's system models. This study exploits the characteristics of the infrared atmospheric sounding interferometer - new generation (IASI-NG) to develop an algorithm for the detection of optically thin cirrus. IASI-NG has been designed for the European Organization for the Exploitation of Meteorological Satellites (EUMETSAT) polar system second-generation program to continue the service of its predecessor IASI from 2024 onward. A thin-cirrus detection algorithm (TCDA) is presented here, as developed for IASI-NG, but also in parallel for IASI to evaluate its performance on currently available real observations. TCDA uses a feedforward neural network (NN) approach to detect thin cirrus eventually misidentified as clear sky by a previously applied cloud detection algorithm. TCDA also estimates the uncertainty of 'clear-sky' or 'thin-cirrus' detection. NN is trained and tested on a dataset of IASI-NG (or IASI) simulations obtained by processing ECMWF 5-generation reanalysis (ERA5) data with the ? -IASI radiative transfer model. TCDA validation against an independent simulated dataset provides a quantitative statistical assessment of the improvements brought by IASI-NG with respect to IASI. In fact, IASI-NG TCDA outperforms IASI TCDA by 3% in probability of detection (POD), 1% in bias, and 2% in accuracy, and the false alarm ratio (FAR) passes from 0.02 to 0.01. Moreover, IASI TCDA validation against state-of-the-art cloud products from Cloudsat/CPR and CALIPSO/Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) real observations reveals a tendency for IASI TCDA to underestimate the presence of thin cirrus (POD = 0.47) but with a low FAR (0.07), which drops to 0.0 for very thin cirrus.

A Feedforward Neural Network Approach for the Detection of Optically Thin Cirrus From IASI-NG

Elisabetta Ricciardelli;Francesco Di Paola;Domenico Cimini;Salvatore Larosa;Filomena Romano
2023-01-01

Abstract

The identification of optically thin cirrus is crucial for their accurate parameterization in climate and Earth's system models. This study exploits the characteristics of the infrared atmospheric sounding interferometer - new generation (IASI-NG) to develop an algorithm for the detection of optically thin cirrus. IASI-NG has been designed for the European Organization for the Exploitation of Meteorological Satellites (EUMETSAT) polar system second-generation program to continue the service of its predecessor IASI from 2024 onward. A thin-cirrus detection algorithm (TCDA) is presented here, as developed for IASI-NG, but also in parallel for IASI to evaluate its performance on currently available real observations. TCDA uses a feedforward neural network (NN) approach to detect thin cirrus eventually misidentified as clear sky by a previously applied cloud detection algorithm. TCDA also estimates the uncertainty of 'clear-sky' or 'thin-cirrus' detection. NN is trained and tested on a dataset of IASI-NG (or IASI) simulations obtained by processing ECMWF 5-generation reanalysis (ERA5) data with the ? -IASI radiative transfer model. TCDA validation against an independent simulated dataset provides a quantitative statistical assessment of the improvements brought by IASI-NG with respect to IASI. In fact, IASI-NG TCDA outperforms IASI TCDA by 3% in probability of detection (POD), 1% in bias, and 2% in accuracy, and the false alarm ratio (FAR) passes from 0.02 to 0.01. Moreover, IASI TCDA validation against state-of-the-art cloud products from Cloudsat/CPR and CALIPSO/Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) real observations reveals a tendency for IASI TCDA to underestimate the presence of thin cirrus (POD = 0.47) but with a low FAR (0.07), which drops to 0.0 for very thin cirrus.
2023
Istituto di Metodologie per l'Analisi Ambientale - IMAA
Feedforward neural network (NN)
next-generation hyperspectral infrared (IR) data
optically thin-cirrus detection
thin-cirrus-detection error
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/460503
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? ND
social impact