The identification of optically thin cirrus is crucial for their accurate parameterization in climate and Earth's system models. This study exploits the characteristics of the infrared atmospheric sounding interferometer - new generation (IASI-NG) to develop an algorithm for the detection of optically thin cirrus. IASI-NG has been designed for the European Organization for the Exploitation of Meteorological Satellites (EUMETSAT) polar system second-generation program to continue the service of its predecessor IASI from 2024 onward. A thin-cirrus detection algorithm (TCDA) is presented here, as developed for IASI-NG, but also in parallel for IASI to evaluate its performance on currently available real observations. TCDA uses a feedforward neural network (NN) approach to detect thin cirrus eventually misidentified as clear sky by a previously applied cloud detection algorithm. TCDA also estimates the uncertainty of 'clear-sky' or 'thin-cirrus' detection. NN is trained and tested on a dataset of IASI-NG (or IASI) simulations obtained by processing ECMWF 5-generation reanalysis (ERA5) data with the ? -IASI radiative transfer model. TCDA validation against an independent simulated dataset provides a quantitative statistical assessment of the improvements brought by IASI-NG with respect to IASI. In fact, IASI-NG TCDA outperforms IASI TCDA by 3% in probability of detection (POD), 1% in bias, and 2% in accuracy, and the false alarm ratio (FAR) passes from 0.02 to 0.01. Moreover, IASI TCDA validation against state-of-the-art cloud products from Cloudsat/CPR and CALIPSO/Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) real observations reveals a tendency for IASI TCDA to underestimate the presence of thin cirrus (POD = 0.47) but with a low FAR (0.07), which drops to 0.0 for very thin cirrus.
A Feedforward Neural Network Approach for the Detection of Optically Thin Cirrus From IASI-NG
Elisabetta Ricciardelli;Francesco Di Paola;Domenico Cimini;Salvatore Larosa;Filomena Romano
2023
Abstract
The identification of optically thin cirrus is crucial for their accurate parameterization in climate and Earth's system models. This study exploits the characteristics of the infrared atmospheric sounding interferometer - new generation (IASI-NG) to develop an algorithm for the detection of optically thin cirrus. IASI-NG has been designed for the European Organization for the Exploitation of Meteorological Satellites (EUMETSAT) polar system second-generation program to continue the service of its predecessor IASI from 2024 onward. A thin-cirrus detection algorithm (TCDA) is presented here, as developed for IASI-NG, but also in parallel for IASI to evaluate its performance on currently available real observations. TCDA uses a feedforward neural network (NN) approach to detect thin cirrus eventually misidentified as clear sky by a previously applied cloud detection algorithm. TCDA also estimates the uncertainty of 'clear-sky' or 'thin-cirrus' detection. NN is trained and tested on a dataset of IASI-NG (or IASI) simulations obtained by processing ECMWF 5-generation reanalysis (ERA5) data with the ? -IASI radiative transfer model. TCDA validation against an independent simulated dataset provides a quantitative statistical assessment of the improvements brought by IASI-NG with respect to IASI. In fact, IASI-NG TCDA outperforms IASI TCDA by 3% in probability of detection (POD), 1% in bias, and 2% in accuracy, and the false alarm ratio (FAR) passes from 0.02 to 0.01. Moreover, IASI TCDA validation against state-of-the-art cloud products from Cloudsat/CPR and CALIPSO/Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) real observations reveals a tendency for IASI TCDA to underestimate the presence of thin cirrus (POD = 0.47) but with a low FAR (0.07), which drops to 0.0 for very thin cirrus.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.