Automatic yield monitoring and in-field robotic harvesting by low-cost cameras require object detection and segmentation solutions to tackle the poor quality of natural images and the lack of exactly-labeled datasets of consistent sizes. This work proposed the application of deep learning for semantic segmentation of natural images acquired by a low-cost RGB-D camera in a commercial vineyard. Several deep architectures were trained and compared on 85 labeled images. Three semi-supervised learning methods (PseudoLabeling, Distillation and Model Distillation) were proposed to take advantage of 320 non-annotated images. In these experiments, the DeepLabV3+ architecture with a ResNext50 backbone, trained with the set of labeled images, achieved the best overall accuracy of 84.78%. In contrast, the Manet architecture combined with the EfficientnetB3 backbone reached the highest accuracy for the bunch class (85.69%). The application of semi-supervised learning methods boosted the segmentation accuracy between 5.62 and 6.01%, on average. Further discussions are presented to show the effects of a fine-grained manual image annotation on the accuracy of the proposed methods and to compare time requirements.

Semi-supervised deep learning and low-cost cameras for the semantic segmentation of natural images in viticulture

Milella A;Marani R
2022

Abstract

Automatic yield monitoring and in-field robotic harvesting by low-cost cameras require object detection and segmentation solutions to tackle the poor quality of natural images and the lack of exactly-labeled datasets of consistent sizes. This work proposed the application of deep learning for semantic segmentation of natural images acquired by a low-cost RGB-D camera in a commercial vineyard. Several deep architectures were trained and compared on 85 labeled images. Three semi-supervised learning methods (PseudoLabeling, Distillation and Model Distillation) were proposed to take advantage of 320 non-annotated images. In these experiments, the DeepLabV3+ architecture with a ResNext50 backbone, trained with the set of labeled images, achieved the best overall accuracy of 84.78%. In contrast, the Manet architecture combined with the EfficientnetB3 backbone reached the highest accuracy for the bunch class (85.69%). The application of semi-supervised learning methods boosted the segmentation accuracy between 5.62 and 6.01%, on average. Further discussions are presented to show the effects of a fine-grained manual image annotation on the accuracy of the proposed methods and to compare time requirements.
2022
Istituto di Sistemi e Tecnologie Industriali Intelligenti per il Manifatturiero Avanzato - STIIMA (ex ITIA)
Semantic segmentation
Semi-supervised learning
Grape bunches
Natural images
Agricultural robot sensing
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/461682
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact