Myotonic Dystrophy type 1 (DM1) is a dominantly inherited neuromuscular disease caused by the abnormal expansion of CTG-triplets in the 3' untranslated region of the DMPK gene and accumulation of the toxic mutated transcripts into ribonuclear foci, leading to a generalized alteration of gene expression. The recent advances in the CRISPR/Cas9 technology have been exploited to correct the genetic basis of diseases such as DM1. Cas9 endonuclease can be targeted to specific locations in the genome via an RNA-guided system to induce double-strand breaks in regions of interest and eliminate permanently the pathogenetic mutation. To achieve this goal, we have generated and transduced tissue-specific and inducible CRISPR/Cas9 components in myogenic cells derived from patients affected by DM1 and obtained the removal of the pathogenetic CTG-repeat expansion and the phenotypic reversion of edited cells. The occurrence of off-target and on-target unintended editing was carefully evaluated. The Cas9 and RNA guides previously tested in DM1 patient-derived cells were then inserted in the backbone of Adeno-Associated Vectors (AAVs) for in vivo administration. Local and systemic transduction of the CRISPR/Cas9 molecules in DMSXL mice, a DM1 mouse model carrying a mutated human transgene from a DM1 patient, resulted in CTG-repeat deletions in the skeletal muscles and in the heart. Although editing efficiency was variable among individuals, partial reversal of DM1-associated molecular alterations in edited tissues was obtained. We have recently optimized editing efficiency by using AAVs showing enhanced tropism for skeletal muscles. Systemic transduction by these myotropic AAVs resulted in much higher expression of CRISPR/Cas9 components in muscles and reduction of ribonuclear foci in the heart of all treated animals. Importantly, recovery of molecular alterations was paralleled by a significant improvement of body weight, that is much reduced in DMSXL mice. Differently from the available therapeutic approaches, CRISPR/Cas9-mediated gene editing is a flexible and efficient technology for durable treatment of DM1 and a detailed understanding of its therapeutic potential in preclinical models is crucial for future application in DM1 patients.
La distrofia miotonica di tipo 1 (DM1) è una malattia neuromuscolare ereditaria dominante causata dall'espansione anormale di una sequenza ripetuta di DNA (CTG) del gene DMPK e dall'accumulo di RNA messaggero prodotto dal gene mutato in aggregati nucleari detti foci che portano ad un'alterazione generalizzata dell'espressione genica. I recenti progressi nella tecnologia CRISPR/Cas9 sono stati sfruttati per correggere le basi genetiche di malattie come la DM1. La proteina Cas9 può essere veicolata in regioni specifiche del genoma tramite un sistema guidato da molecole di RNA in modo da indurre dei tagli nelle regioni di DNA designate ed eliminare definitivamente la mutazione patogenetica, producendo un evento di "editing" genetico. Per raggiungere questo obiettivo, abbiamo generato i componenti del complesso CRISPR/Cas9 specifici per il tessuto muscolare e li abbiamo trasferiti in cellule derivate da pazienti affetti da DM1 ottenendo la rimozione della sequenza ripetuta di CTG e la parziale correzione dei difetti delle cellule modificate. L'eventuale verificarsi di eventi di taglio del DNA in regioni non previste e la precisione delle correzioni ottenute nelle regioni desiderate è stato attentamente valutato. Le stesse componenti del complesso CRISPR/Cas9 precedentemente testate in cellule derivate da pazienti affetti da DM1 sono state quindi inserite in vettori virali adeno-associati (AAV) per la somministrazione in modelli animali. I topi DMSXL sono un modello di DM1 che contiene il gene umano DMPK mutato ottenuto da un paziente di DM1. Il trasferimento locale e sistemico delle molecole del complesso CRISPR/Cas9 nei topi DMSXL ha prodotto la rimozione prevista delle espansioni di CTG nei muscoli scheletrici e nel cuore. Sebbene l'efficacia della correzione fosse variabile, è stata ottenuta una parziale "normalizzazione" delle alterazioni molecolari associate alla DM1 nei tessuti corretti. Recentemente abbiamo ottimizzato l'efficienza dell'editing utilizzando vettori AAV che mostrano un tropismo accentuato per i muscoli scheletrici. Questi AAV hanno indotto un'espressione molto più elevata dei componenti del complesso CRISPR/Cas9 nei muscoli, e una significativa riduzione dei foci nucleari nel cuore di tutti gli animali trattati. Inoltre, il recupero delle alterazioni molecolari è stato accompagnato da un significativo miglioramento del peso corporeo, che è molto ridotto nei topi DMSXL. Diversamente dagli approcci terapeutici finora disponibili, l'editing genetico mediato da CRISPR/Cas9 è una tecnologia flessibile ed efficace per un trattamento duraturo della DM1 e lo studio approfondito del suo potenziale terapeutico nei modelli preclinici è cruciale per una futura applicazione nei pazienti affetti da DM1.
GENE EDITING IN MYOTONIC DYSTROPHY TYPE 1: ASSESSMENT OF EFFICIENCY, SAFETY AND THERAPEUTIC EFFECT OF CTG-REPEAT DELETION IN A MOUSE MODEL OF DISEASE
Cardinali B;Provenzano C;Mandillo S;Golini E;Strimpakos G;Scavizzi F;Raspa M;Falcone Germana
2023
Abstract
Myotonic Dystrophy type 1 (DM1) is a dominantly inherited neuromuscular disease caused by the abnormal expansion of CTG-triplets in the 3' untranslated region of the DMPK gene and accumulation of the toxic mutated transcripts into ribonuclear foci, leading to a generalized alteration of gene expression. The recent advances in the CRISPR/Cas9 technology have been exploited to correct the genetic basis of diseases such as DM1. Cas9 endonuclease can be targeted to specific locations in the genome via an RNA-guided system to induce double-strand breaks in regions of interest and eliminate permanently the pathogenetic mutation. To achieve this goal, we have generated and transduced tissue-specific and inducible CRISPR/Cas9 components in myogenic cells derived from patients affected by DM1 and obtained the removal of the pathogenetic CTG-repeat expansion and the phenotypic reversion of edited cells. The occurrence of off-target and on-target unintended editing was carefully evaluated. The Cas9 and RNA guides previously tested in DM1 patient-derived cells were then inserted in the backbone of Adeno-Associated Vectors (AAVs) for in vivo administration. Local and systemic transduction of the CRISPR/Cas9 molecules in DMSXL mice, a DM1 mouse model carrying a mutated human transgene from a DM1 patient, resulted in CTG-repeat deletions in the skeletal muscles and in the heart. Although editing efficiency was variable among individuals, partial reversal of DM1-associated molecular alterations in edited tissues was obtained. We have recently optimized editing efficiency by using AAVs showing enhanced tropism for skeletal muscles. Systemic transduction by these myotropic AAVs resulted in much higher expression of CRISPR/Cas9 components in muscles and reduction of ribonuclear foci in the heart of all treated animals. Importantly, recovery of molecular alterations was paralleled by a significant improvement of body weight, that is much reduced in DMSXL mice. Differently from the available therapeutic approaches, CRISPR/Cas9-mediated gene editing is a flexible and efficient technology for durable treatment of DM1 and a detailed understanding of its therapeutic potential in preclinical models is crucial for future application in DM1 patients.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.