This paper analyzes the approximation properties of spaces of piecewise tensor product polynomials over box meshes with a focus on application to isogeometric analysis. Local and global error bounds with respect to Sobolev or reduced seminorms are provided. Attention is also paid to the dependence on the degree, and exponential convergence is proved for the approximation of analytic functions in the absence of non-convex extended supports.
Local approximation from spline spaces on box meshes
A Bressan;
2021
Abstract
This paper analyzes the approximation properties of spaces of piecewise tensor product polynomials over box meshes with a focus on application to isogeometric analysis. Local and global error bounds with respect to Sobolev or reduced seminorms are provided. Attention is also paid to the dependence on the degree, and exponential convergence is proved for the approximation of analytic functions in the absence of non-convex extended supports.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
prod_485478-doc_201127.pdf
solo utenti autorizzati
Descrizione: Local Approximation from Spline Spaces on Box Meshes
Tipologia:
Versione Editoriale (PDF)
Licenza:
NON PUBBLICO - Accesso privato/ristretto
Dimensione
908.7 kB
Formato
Adobe PDF
|
908.7 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
prod_485478-doc_201128.pdf
accesso aperto
Descrizione: Local Approximation from Spline Spaces on Box Meshes
Tipologia:
Documento in Pre-print
Licenza:
Altro tipo di licenza
Dimensione
590.09 kB
Formato
Adobe PDF
|
590.09 kB | Adobe PDF | Visualizza/Apri |
submitted_rev.pdf
Open Access dal 08/07/2021
Tipologia:
Documento in Post-print
Licenza:
Altro tipo di licenza
Dimensione
572.59 kB
Formato
Adobe PDF
|
572.59 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.