This paper analyzes the approximation properties of spaces of piecewise tensor product polynomials over box meshes with a focus on application to isogeometric analysis. Local and global error bounds with respect to Sobolev or reduced seminorms are provided. Attention is also paid to the dependence on the degree, and exponential convergence is proved for the approximation of analytic functions in the absence of non-convex extended supports.

Local approximation from spline spaces on box meshes

A Bressan;
2021

Abstract

This paper analyzes the approximation properties of spaces of piecewise tensor product polynomials over box meshes with a focus on application to isogeometric analysis. Local and global error bounds with respect to Sobolev or reduced seminorms are provided. Attention is also paid to the dependence on the degree, and exponential convergence is proved for the approximation of analytic functions in the absence of non-convex extended supports.
2021
Istituto di Matematica Applicata e Tecnologie Informatiche - IMATI -
Approximation
Spline spaces
Box meshes
Quasi-interpolants
Local error bounds
Global error bounds
Anisotropic error bounds
Reduced seminorms
Isogeometric analysis
File in questo prodotto:
File Dimensione Formato  
prod_485478-doc_201127.pdf

non disponibili

Descrizione: Local Approximation from Spline Spaces on Box Meshes
Tipologia: Versione Editoriale (PDF)
Dimensione 908.7 kB
Formato Adobe PDF
908.7 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
prod_485478-doc_201128.pdf

accesso aperto

Descrizione: Local Approximation from Spline Spaces on Box Meshes
Tipologia: Versione Editoriale (PDF)
Dimensione 590.09 kB
Formato Adobe PDF
590.09 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/462088
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact